BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36212367)

  • 1. Corrigendum: The
    Bell L; Chadwick M; Puranik M; Tudor R; Methven L; Kennedy S; Wagstaff C
    Front Plant Sci; 2022; 13():1026101. PubMed ID: 36212367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The
    Bell L; Chadwick M; Puranik M; Tudor R; Methven L; Kennedy S; Wagstaff C
    Front Plant Sci; 2020; 11():525102. PubMed ID: 33193472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket).
    Bennett RN; Rosa EA; Mellon FA; Kroon PA
    J Agric Food Chem; 2006 May; 54(11):4005-15. PubMed ID: 16719527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth temperature influences postharvest glucosinolate concentrations and hydrolysis product formation in first and second cuts of rocket salad.
    Jasper J; Wagstaff C; Bell L
    Postharvest Biol Technol; 2020 May; 163():111157. PubMed ID: 32362723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium Biofortification Differentially Affects Sulfur Metabolism and Accumulation of Phytochemicals in Two Rocket Species (
    Dall'Acqua S; Ertani A; Pilon-Smits EAH; Fabrega-Prats M; Schiavon M
    Plants (Basel); 2019 Mar; 8(3):. PubMed ID: 30884867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Glucosinolate Content in Rocket Leaves (
    Bell L; Lignou S; Wagstaff C
    Foods; 2020 Dec; 9(12):. PubMed ID: 33287337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations.
    Bennett RN; Carvalho R; Mellon FA; Eagles J; Rosa EA
    J Agric Food Chem; 2007 Jan; 55(1):67-74. PubMed ID: 17199315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments.
    Jin J; Koroleva OA; Gibson T; Swanston J; Magan J; Zhang Y; Rowland IR; Wagstaff C
    J Agric Food Chem; 2009 Jun; 57(12):5227-34. PubMed ID: 19489541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Wild Rocket (
    Reis JM; Pereira RJ; Coelho PS; Leitão JM
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops.
    Bell L; Oruna-Concha MJ; Wagstaff C
    Food Chem; 2015 Apr; 172():852-61. PubMed ID: 25442630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia.
    Cavaiuolo M; Cocetta G; Spadafora ND; Müller CT; Rogers HJ; Ferrante A
    PLoS One; 2017; 12(5):e0178119. PubMed ID: 28558066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in the most abundant types of glucosinolates found in the leaves of baby leaf rocket under typical commercial conditions.
    Hall MK; Jobling JJ; Rogers GS
    J Sci Food Agric; 2015 Feb; 95(3):552-9. PubMed ID: 24912775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red Light Is Effective in Reducing Nitrate Concentration in Rocket by Increasing Nitrate Reductase Activity, and Contributes to Increased Total Glucosinolates Content.
    Signore A; Bell L; Santamaria P; Wagstaff C; Van Labeke MC
    Front Plant Sci; 2020; 11():604. PubMed ID: 32477393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia).
    Bell L; Wagstaff C
    J Agric Food Chem; 2014 May; 62(20):4481-92. PubMed ID: 24773270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of volatiles and identification of odor-active compounds of rocket leaves.
    Raffo A; Masci M; Moneta E; Nicoli S; Sánchez Del Pulgar J; Paoletti F
    Food Chem; 2018 Feb; 240():1161-1170. PubMed ID: 28946238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content.
    Pasini F; Verardo V; Cerretani L; Caboni MF; D'Antuono LF
    J Sci Food Agric; 2011 Dec; 91(15):2858-64. PubMed ID: 21725983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FTIR spectroscopy as a tool to detect contamination of rocket (Eruca sativa and Diplotaxis tenuifolia) salad with common groundsel (Senecio vulgaris) leaves.
    Kokalj M; Prikeržnik M; Kreft S
    J Sci Food Agric; 2017 May; 97(7):2238-2244. PubMed ID: 27620169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Report of Fusarium oxysporum on Eruca vesicaria and Diplotaxis spp. in Europe.
    Garibaldi A; Gilardi G; Gullino ML
    Plant Dis; 2003 Feb; 87(2):201. PubMed ID: 30812931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of TD-GC-TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa).
    Bell L; Spadafora ND; Müller CT; Wagstaff C; Rogers HJ
    Food Chem; 2016 Mar; 194():626-36. PubMed ID: 26471601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis of Eruca vesicaria subs. sativa lines with contrasting tolerance to polyethylene glycol-simulated drought stress.
    Huang BL; Li X; Liu P; Ma L; Wu W; Zhang X; Li Z; Huang B
    BMC Plant Biol; 2019 Oct; 19(1):419. PubMed ID: 31604421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.