BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36212540)

  • 1. Literature-based translation from synthetic lethality screening into therapeutics targets: CD82 is a novel target for
    Yang HT; Chien MY; Chiang JH; Lin PC
    Comput Struct Biotechnol J; 2022; 20():5287-5295. PubMed ID: 36212540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ranking novel cancer driving synthetic lethal gene pairs using TCGA data.
    Ye H; Zhang X; Chen Y; Liu Q; Wei J
    Oncotarget; 2016 Aug; 7(34):55352-55367. PubMed ID: 27438146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced dependency of KRAS-mutant colorectal cancer cells on RAD51-dependent homologous recombination repair identified from genetic interactions in Saccharomyces cerevisiae.
    Kalimutho M; Bain AL; Mukherjee B; Nag P; Nanayakkara DM; Harten SK; Harris JL; Subramanian GN; Sinha D; Shirasawa S; Srihari S; Burma S; Khanna KK
    Mol Oncol; 2017 May; 11(5):470-490. PubMed ID: 28173629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for the unfolded protein response stress sensor ERN1 in regulating the response to MEK inhibitors in KRAS mutant colon cancers.
    Šuštić T; van Wageningen S; Bosdriesz E; Reid RJD; Dittmar J; Lieftink C; Beijersbergen RL; Wessels LFA; Rothstein R; Bernards R
    Genome Med; 2018 Nov; 10(1):90. PubMed ID: 30482246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CSNK1E/CTNNB1 are synthetic lethal to TP53 in colorectal cancer and are markers for prognosis.
    Tiong KL; Chang KC; Yeh KT; Liu TY; Wu JH; Hsieh PH; Lin SH; Lai WY; Hsu YC; Chen JY; Chang JG; Shieh GS
    Neoplasia; 2014 May; 16(5):441-50. PubMed ID: 24947187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming selection bias in synthetic lethality prediction.
    Seale C; Tepeli Y; Gonçalves JP
    Bioinformatics; 2022 Sep; 38(18):4360-4368. PubMed ID: 35876858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets.
    Guo J; Liu H; Zheng J
    Nucleic Acids Res; 2016 Jan; 44(D1):D1011-7. PubMed ID: 26516187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embracing synthetic lethality of novel anticancer therapies.
    Kamal A; Shaik TB; Malik MS
    Expert Opin Drug Discov; 2015 Oct; 10(10):1119-32. PubMed ID: 26211783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between microsatellite instability and RAS gene mutation and stage III colorectal cancer.
    Niu W; Wang G; Feng J; Li Z; Li C; Shan B
    Oncol Lett; 2019 Jan; 17(1):332-338. PubMed ID: 30655771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using graph-based model to identify cell specific synthetic lethal effects.
    Pu M; Cheng K; Li X; Xin Y; Wei L; Jin S; Zheng W; Peng G; Tang Q; Zhou J; Zhang Y
    Comput Struct Biotechnol J; 2023; 21():5099-5110. PubMed ID: 37920819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SP174 Antibody Lacks Specificity for NRAS Q61R and Cross-Reacts With HRAS and KRAS Q61R Mutant Proteins in Malignant Melanoma.
    Felisiak-Goląbek A; Inaguma S; Kowalik A; Wasąg B; Wang ZF; Zięba S; Pięciak L; Ryś J; Kopczynski J; Sarlomo-Rikala M; Góźdź S; Lasota J; Miettinen M
    Appl Immunohistochem Mol Morphol; 2018 Jan; 26(1):40-45. PubMed ID: 29206715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anchorage-independent growth conditions reveal a differential SOS2 dependence for transformation and survival in
    Sheffels E; Sealover NE; Theard PL; Kortum RL
    Small GTPases; 2021 Jan; 12(1):67-78. PubMed ID: 31062644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Redundant and Overlapping Oncogenic Readouts of Non-Canonical and Novel Colorectal Cancer KRAS and NRAS Mutants.
    Alcantara KMM; Malapit JRP; Yu RTD; Garrido JAMG; Rigor JPT; Angeles AKJ; Cutiongco-de la Paz EM; Garcia RL
    Cells; 2019 Dec; 8(12):. PubMed ID: 31816869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Werner Syndrome Helicase Is Required for the Survival of Cancer Cells with Microsatellite Instability.
    Kategaya L; Perumal SK; Hager JH; Belmont LD
    iScience; 2019 Mar; 13():488-497. PubMed ID: 30898619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Lethality Screening with Recursive Feature Machines.
    Cai C; Radhakrishnan A; Uhler C
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omics characterization of synthetic lethality-related molecular features: implications for SL-based therapeutic target screening.
    Weng S; Ruan H
    FEBS J; 2023 Mar; 290(6):1477-1480. PubMed ID: 36461713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation status and prognostic value of KRAS and NRAS mutations in Moroccan colon cancer patients: A first report.
    El Agy F; El Bardai S; El Otmani I; Benbrahim Z; Karim MH; Mazaz K; Benjelloun EB; Ousadden A; El Abkari M; Ibrahimi SA; Chbani L
    PLoS One; 2021; 16(3):e0248522. PubMed ID: 33784337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paralog-based synthetic lethality: rationales and applications.
    Xin Y; Zhang Y
    Front Oncol; 2023; 13():1168143. PubMed ID: 37350942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates.
    Zhang F; Wu M; Li XJ; Li XL; Kwoh CK; Zheng J
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541002. PubMed ID: 25669329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.