These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36212614)

  • 1. Integrating computer vision to prosthetic hand control with sEMG: Preliminary results in grasp classification.
    Wang S; Zheng J; Huang Z; Zhang X; Prado da Fonseca V; Zheng B; Jiang X
    Front Robot AI; 2022; 9():948238. PubMed ID: 36212614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-Based Grasp Classification for Prosthetic Hand Control Using sEMG.
    Wang S; Zheng J; Zheng B; Jiang X
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning approach to identify hand actions from single-channel sEMG signals.
    Savithri CN; Priya E; Rajasekar K
    Biomed Tech (Berl); 2022 Apr; 67(2):89-103. PubMed ID: 35191277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid 3D Printed Hand Prosthesis Prototype Based on sEMG and a Fully Embedded Computer Vision System.
    Castro MCF; Pinheiro WC; Rigolin G
    Front Neurorobot; 2021; 15():751282. PubMed ID: 35140597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of clinical parameters on the control of myoelectric robotic prosthetic hands.
    Atzori M; Gijsberts A; Castellini C; Caputo B; Hager AG; Elsig S; Giatsidis G; Bassetto F; Müller H
    J Rehabil Res Dev; 2016; 53(3):345-58. PubMed ID: 27272750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous sEMG Recognition of Gestures and Force Levels for Interaction With Prosthetic Hand.
    Fang B; Wang C; Sun F; Chen Z; Shan J; Liu H; Ding W; Liang W
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2426-2436. PubMed ID: 35981072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myoelectric Signal Classification of Targeted Muscles Using Dictionary Learning.
    Yoo HJ; Park HJ; Lee B
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31126025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCA and deep learning based myoelectric grasping control of a prosthetic hand.
    Li C; Ren J; Huang H; Wang B; Zhu Y; Hu H
    Biomed Eng Online; 2018 Aug; 17(1):107. PubMed ID: 30081927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer Vision-Based Grasp Pattern Recognition With Application to Myoelectric Control of Dexterous Hand Prosthesis.
    Shi C; Yang D; Zhao J; Liu H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Sep; 28(9):2090-2099. PubMed ID: 32746315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.
    Naik GR; Al-Timemy AH; Nguyen HT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):837-46. PubMed ID: 26394431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Integration of Domain Knowledge-Guided Feature Engineering and Deep Feature Learning in Surface Electromyography-Based Hand Movement Recognition.
    Wei W; Hu X; Liu H; Zhou M; Song Y
    Comput Intell Neurosci; 2021; 2021():4454648. PubMed ID: 35003244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future.
    Li W; Shi P; Yu H
    Front Neurosci; 2021; 15():621885. PubMed ID: 33981195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time intelligent pattern recognition algorithm for surface EMG signals.
    Khezri M; Jahed M
    Biomed Eng Online; 2007 Dec; 6():45. PubMed ID: 18053184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.
    Atzori M; Cognolato M; Müller H
    Front Neurorobot; 2016; 10():9. PubMed ID: 27656140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping.
    Cognolato M; Atzori M; Gassert R; Müller H
    Front Artif Intell; 2021; 4():744476. PubMed ID: 35146422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface EMG pattern recognition for real-time control of a wrist exoskeleton.
    Khokhar ZO; Xiao ZG; Menon C
    Biomed Eng Online; 2010 Aug; 9():41. PubMed ID: 20796304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.