These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36212721)

  • 1. Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models.
    Bijari S; Jahanbakhshi A; Hajishafiezahramini P; Abdolmaleki P
    Biomed Res Int; 2022; 2022():2016006. PubMed ID: 36212721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach.
    Zhang L; Liu X; Xu X; Liu W; Jia Y; Chen W; Fu X; Li Q; Sun X; Zhang Y; Shu S; Zhang X; Xiang R; Chen H; Sun P; Geng D; Yu Z; Liu J; Wang J
    Eur J Radiol; 2023 Jan; 158():110639. PubMed ID: 36463703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a multi-modality fusion deep learning model for differentiating glioblastoma from solitary brain metastases.
    Shen S; Li C; Fan Y; Lu S; Yan Z; Liu H; Zhou H; Zhang Z
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 49(1):58-67. PubMed ID: 38615167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics.
    Priya S; Liu Y; Ward C; Le NH; Soni N; Pillenahalli Maheshwarappa R; Monga V; Zhang H; Sonka M; Bathla G
    Sci Rep; 2021 May; 11(1):10478. PubMed ID: 34006893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic-MRI and Deep-Learning Radiomics Signatures.
    Zhang Y; Zhang H; Zhang H; Ouyang Y; Su R; Yang W; Huang B
    J Magn Reson Imaging; 2023 Nov; ():. PubMed ID: 37955154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation.
    Assefa D; Keller H; Ménard C; Laperriere N; Ferrari RJ; Yeung I
    Med Phys; 2010 Apr; 37(4):1722-36. PubMed ID: 20443493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Application of DTCWT on MRI-Derived Radiomics for Differentiation of Glioblastoma and Solitary Brain Metastases.
    Wu WF; Shen CW; Lai KM; Chen YJ; Lin EC; Chen CC
    J Pers Med; 2022 Aug; 12(8):. PubMed ID: 36013225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.
    Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y
    Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AI-based classification of three common malignant tumors in neuro-oncology: A multi-institutional comparison of machine learning and deep learning methods.
    Bathla G; Dhruba DD; Soni N; Liu Y; Larson NB; Kassmeyer BA; Mohan S; Roberts-Wolfe D; Rathore S; Le NH; Zhang H; Sonka M; Priya S
    J Neuroradiol; 2024 May; 51(3):258-264. PubMed ID: 37652263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI radiomics to differentiate between low grade glioma and glioblastoma peritumoral region.
    Malik N; Geraghty B; Dasgupta A; Maralani PJ; Sandhu M; Detsky J; Tseng CL; Soliman H; Myrehaug S; Husain Z; Perry J; Lau A; Sahgal A; Czarnota GJ
    J Neurooncol; 2021 Nov; 155(2):181-191. PubMed ID: 34694564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases.
    Basree MM; Li C; Um H; Bui AH; Liu M; Ahmed A; Tiwari P; McMillan AB; Baschnagel AM
    J Neurooncol; 2024 Jun; 168(2):307-316. PubMed ID: 38689115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme.
    Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z
    Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques.
    Bathla G; Priya S; Liu Y; Ward C; Le NH; Soni N; Maheshwarappa RP; Monga V; Zhang H; Sonka M
    Eur Radiol; 2021 Nov; 31(11):8703-8713. PubMed ID: 33890149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T
    Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB
    BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis.
    Liu Y; Zhang X; Feng N; Yin L; He Y; Xu X; Lu H
    Acta Radiol; 2018 Oct; 59(10):1239-1246. PubMed ID: 29430935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-to-event overall survival prediction in glioblastoma multiforme patients using magnetic resonance imaging radiomics.
    Hajianfar G; Haddadi Avval A; Hosseini SA; Nazari M; Oveisi M; Shiri I; Zaidi H
    Radiol Med; 2023 Dec; 128(12):1521-1534. PubMed ID: 37751102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of Radiomics and Metabolic Tumor Volumes in Radiation Treatment of Glioblastoma Multiforme.
    Lopez CJ; Nagornaya N; Parra NA; Kwon D; Ishkanian F; Markoe AM; Maudsley A; Stoyanova R
    Int J Radiat Oncol Biol Phys; 2017 Mar; 97(3):586-595. PubMed ID: 28011044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time.
    Liao X; Cai B; Tian B; Luo Y; Song W; Li Y
    J Cell Mol Med; 2019 Jun; 23(6):4375-4385. PubMed ID: 31001929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.