These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36212860)

  • 21. Monitoring Growth Compatibility and Bacteriocin Gene Transcription of Adjunct and Starter Lactic Acid Bacterial Strains in Milk.
    Asimakoula S; Giaka K; Fanitsios C; Kakouri A; Vandera E; Samelis J; Koukkou AI
    J Food Prot; 2021 Mar; 84(3):509-520. PubMed ID: 33108438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Technological Properties and Biogenic Amines Production by Bacteriocinogenic Lactococci and Enterococci Strains Isolated from Raw Goat's Milk.
    Perin LM; Belviso S; Bello BD; Nero LA; Cocolin L
    J Food Prot; 2017 Jan; 80(1):151-157. PubMed ID: 28221886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Some Technological Properties of Lactic Acid Bacteria Isolated from
    Shangpliang HN; Sharma S; Rai R; Tamang JP
    Front Microbiol; 2017; 8():116. PubMed ID: 28203227
    [No Abstract]   [Full Text] [Related]  

  • 24. Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains.
    Yerlikaya O
    J Dairy Sci; 2019 Jan; 102(1):124-134. PubMed ID: 30391179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.
    Larsen N; Werner BB; Vogensen FK; Jespersen L
    J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating lactic acid bacteria genus
    Hamdaoui N; Benkirane C; Bouaamali H; Azghar A; Mouncif M; Maleb A; Hammouti B; Al-Anazi KM; Kumar P; Yadav KK; Choi JR; Meziane M
    Heliyon; 2024 Jun; 10(11):e31957. PubMed ID: 38867975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of organic flavor compounds by dominant lactic acid bacteria and yeasts from
    Mukisa IM; Byaruhanga YB; Muyanja CMBK; Langsrud T; Narvhus JA
    Food Sci Nutr; 2017 May; 5(3):702-712. PubMed ID: 28572960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fermentation Characteristics of
    Li W; Ren M; Duo L; Li J; Wang S; Sun Y; Li M; Ren W; Hou Q; Yu J; Sun Z; Sun T
    Front Microbiol; 2020; 11():1794. PubMed ID: 32903743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resistance to bacteriocin Lcn972 improves oxygen tolerance of Lactococcus lactis IPLA947 without compromising its performance as a dairy starter.
    López-González MJ; Campelo AB; Picon A; Rodríguez A; Martínez B
    BMC Microbiol; 2018 Jul; 18(1):76. PubMed ID: 30029618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The growth and interaction of yeasts and lactic acid bacteria isolated from Zimbabwean naturally fermented milk in UHT milk.
    Gadaga TH; Mutukumira AN; Narvhus JA
    Int J Food Microbiol; 2001 Aug; 68(1-2):21-32. PubMed ID: 11545217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of different isolation sources of
    Yu X; Sun Y; Shen X; Li W; Cai H; Guo S; Sun Z
    Food Chem X; 2024 Mar; 21():101224. PubMed ID: 38384690
    [No Abstract]   [Full Text] [Related]  

  • 32. Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili.
    Kahala M; Mäki M; Lehtovaara A; Tapanainen JM; Katiska R; Juuruskorpi M; Juhola J; Joutsjoki V
    J Appl Microbiol; 2008 Dec; 105(6):1929-38. PubMed ID: 19120639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. α-Acetolactate synthase of Lactococcus lactis contributes to pH homeostasis in acid stress conditions.
    Zuljan FA; Repizo GD; Alarcon SH; Magni C
    Int J Food Microbiol; 2014 Oct; 188():99-107. PubMed ID: 25100661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk.
    Ng KS; Chang YC; Chen YP; Lo YH; Wang SY; Chen MJ
    Anim Biosci; 2022 Feb; 35(2):281-289. PubMed ID: 34530518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomics divergence of Lactococcus lactis subsp. lactis isolated from naturally fermented dairy products.
    Liu W; Li W; Zheng H; Kwok LY; Sun Z
    Food Res Int; 2022 May; 155():111108. PubMed ID: 35400401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lactic acid bacteria in some Indian fermented foods and their predictive functional profiles.
    Tamang JP; Kharnaior P; Halami PM
    Braz J Microbiol; 2024 Jun; 55(2):1745-1751. PubMed ID: 38337126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenotypic and Safety Assessment of the Cheese Strain
    Flórez AB; Vázquez L; Rodríguez J; Mayo B
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterisation of technologically proficient wild Lactococcus lactis strains resistant to phage infection.
    Madera C; García P; Janzen T; Rodríguez A; Suárez JE
    Int J Food Microbiol; 2003 Sep; 86(3):213-22. PubMed ID: 12915032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of Flavor-Forming Starter
    Lee HW; Kim IS; Kil BJ; Seo E; Park H; Ham JS; Choi YJ; Huh CS
    J Microbiol Biotechnol; 2020 Sep; 30(9):1404-1411. PubMed ID: 32522956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and Characterization of Lactic Acid Bacteria from Fermented Goat Milk in Tajikistan.
    Cho GS; Cappello C; Schrader K; Fagbemigum O; Oguntoyinbo FA; Csovcsics C; Rösch N; Kabisch J; Neve H; Bockelmann W; Briviba K; Modesto M; Cilli E; Mattarelli P; Franz CMAP
    J Microbiol Biotechnol; 2018 Nov; 28(11):1834-1845. PubMed ID: 30562882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.