These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36212878)

  • 1. Efficient production of the β-ionone aroma compound from organic waste hydrolysates using an engineered
    Chen S; Lu Y; Wang W; Hu Y; Wang J; Tang S; Lin CSK; Yang X
    Front Microbiol; 2022; 13():960558. PubMed ID: 36212878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone.
    Czajka JJ; Nathenson JA; Benites VT; Baidoo EEK; Cheng Q; Wang Y; Tang YJ
    Microb Cell Fact; 2018 Sep; 17(1):136. PubMed ID: 30172260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of β-ionone from xylose and lignocellulosic hydrolysate in genetically engineered oleaginous yeast Yarrowia lipolytica.
    Shi JT; Wu YY; Sun RZ; Hua Q; Wei LJ
    Biotechnol Lett; 2024 Dec; 46(6):1219-1236. PubMed ID: 39377872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient metabolic evolution of engineered
    Li C; Gao S; Li X; Yang X; Lin CSK
    Biotechnol Biofuels; 2018; 11():236. PubMed ID: 30181775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the oleaginous yeast
    Pang Y; Zhao Y; Li S; Zhao Y; Li J; Hu Z; Zhang C; Xiao D; Yu A
    Biotechnol Biofuels; 2019; 12():241. PubMed ID: 31624503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae.
    López J; Essus K; Kim IK; Pereira R; Herzog J; Siewers V; Nielsen J; Agosin E
    Microb Cell Fact; 2015 Jun; 14():84. PubMed ID: 26063466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering
    Niehus X; Crutz-Le Coq AM; Sandoval G; Nicaud JM; Ledesma-Amaro R
    Biotechnol Biofuels; 2018; 11():11. PubMed ID: 29387172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of dihydro-β-ionone from carotenoids using carotenoid cleavage dioxygenase and enoate reductase.
    Qi Z; Tong X; Zhang X; Lin H; Bu S; Zhao L
    Bioprocess Biosyst Eng; 2022 May; 45(5):891-900. PubMed ID: 35244776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate.
    Yao F; Liu SC; Wang DN; Liu ZJ; Hua Q; Wei LJ
    FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32840573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Proteomes of Robust Yarrowia lipolytica Isolates Cultivated in Biomass Hydrolysate Reveals Key Processes Impacting Mixed Sugar Utilization, Lipid Accumulation, and Degradation.
    Walker C; Dien B; Giannone RJ; Slininger P; Thompson SR; Trinh CT
    mSystems; 2021 Aug; 6(4):e0044321. PubMed ID: 34342539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain.
    Drzymała-Kapinos K; Mirończuk AM; Dobrowolski A
    Microb Cell Fact; 2022 Oct; 21(1):226. PubMed ID: 36307797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of α-Pinene by Genetically Engineered
    Wei LJ; Zhong YT; Nie MY; Liu SC; Hua Q
    J Agric Food Chem; 2021 Jan; 69(1):275-285. PubMed ID: 33356235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica.
    Prabhu AA; Thomas DJ; Ledesma-Amaro R; Leeke GA; Medina A; Verheecke-Vaessen C; Coulon F; Agrawal D; Kumar V
    Microb Cell Fact; 2020 Jun; 19(1):121. PubMed ID: 32493445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioproduction of succinic acid from xylose by engineered
    Prabhu AA; Ledesma-Amaro R; Lin CSK; Coulon F; Thakur VK; Kumar V
    Biotechnol Biofuels; 2020; 13():113. PubMed ID: 32607128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering
    López J; Bustos D; Camilo C; Arenas N; Saa PA; Agosin E
    Front Bioeng Biotechnol; 2020; 8():578793. PubMed ID: 33102463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a fermenting yeast able to produce the fragrant β-ionone apocarotenoid for enhanced aroma properties in wine.
    Timmins J; van Wyk N; Kroukamp H; Walker R; Fritsch S; Rauhut D; Wallbrunn C; Pretorius I; Paulsen I
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36708173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring of Glucose Metabolism of Engineered Yarrowia lipolytica for Succinic Acid Production via a Simple and Efficient Adaptive Evolution Strategy.
    Yang X; Wang H; Li C; Lin CSK
    J Agric Food Chem; 2017 May; 65(20):4133-4139. PubMed ID: 28474529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein engineering of carotenoid cleavage dioxygenases to optimize β-ionone biosynthesis in yeast cell factories.
    Werner N; Ramirez-Sarmiento CA; Agosin E
    Food Chem; 2019 Nov; 299():125089. PubMed ID: 31319343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.