These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36212948)

  • 1. Nanoformulation of Tetrapyrroles Derivatives in Photodynamic Therapy: A Focus on Bacteriochlorin.
    Pallavi P; Harini K; Anand Arumugam V; Gowtham P; Girigoswami K; Muthukrishnan S; Girigoswami A
    Evid Based Complement Alternat Med; 2022; 2022():3011918. PubMed ID: 36212948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers.
    Martinez De Pinillos Bayona A; Mroz P; Thunshelle C; Hamblin MR
    Chem Biol Drug Des; 2017 Feb; 89(2):192-206. PubMed ID: 28205400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotechnology for photodynamic therapy: a perspective from the Laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School.
    Hamblin MR; Chiang LY; Lakshmanan S; Huang YY; Garcia-Diaz M; Karimi M; de Souza Rastelli AN; Chandran R
    Nanotechnol Rev; 2015 Aug; 4(4):359-372. PubMed ID: 26640747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A next-generation bifunctional photosensitizer with improved water-solubility for photodynamic therapy and diagnosis.
    Nishie H; Kataoka H; Yano S; Kikuchi JI; Hayashi N; Narumi A; Nomoto A; Kubota E; Joh T
    Oncotarget; 2016 Nov; 7(45):74259-74268. PubMed ID: 27708235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New photosensitizers for photodynamic therapy.
    Abrahamse H; Hamblin MR
    Biochem J; 2016 Feb; 473(4):347-64. PubMed ID: 26862179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodynamic therapy: one step ahead with self-assembled nanoparticles.
    Avci P; Erdem SS; Hamblin MR
    J Biomed Nanotechnol; 2014 Sep; 10(9):1937-52. PubMed ID: 25580097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy.
    Nyman ES; Hynninen PH
    J Photochem Photobiol B; 2004 Jan; 73(1-2):1-28. PubMed ID: 14732247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Induced Liposomal Drug Delivery with an Amphiphilic Porphyrin and Its Chlorin and Bacteriochlorin Analogues.
    Enzian P; Kleineberg N; Kirchert E; Schell C; Rahmanzadeh R
    Mol Pharm; 2024 Feb; 21(2):609-621. PubMed ID: 38189667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled liposomal nanoparticles in photodynamic therapy.
    Sadasivam M; Avci P; Gupta GK; Lakshmanan S; Chandran R; Huang YY; Kumar R; Hamblin MR
    Eur J Nanomed; 2013 Jul; 5(3):. PubMed ID: 24348377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polylactide-Based Block Copolymeric Micelles Loaded with Chlorin e6 for Photodynamic Therapy: In Vitro Evaluation in Monolayer and 3D Spheroid Models.
    Kumari P; Jain S; Ghosh B; Zorin V; Biswas S
    Mol Pharm; 2017 Nov; 14(11):3789-3800. PubMed ID: 28969421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular micelles as multifunctional theranostic agents for synergistic photodynamic therapy and hypoxia-activated chemotherapy.
    Huang X; Chen T; Mu N; Lam HW; Sun C; Yue L; Cheng Q; Gao C; Yuan Z; Wang R
    Acta Biomater; 2021 Sep; 131():483-492. PubMed ID: 34265471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy.
    Khdair A; Gerard B; Handa H; Mao G; Shekhar MP; Panyam J
    Mol Pharm; 2008; 5(5):795-807. PubMed ID: 18646775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer.
    Shang L; Zhou X; Zhang J; Shi Y; Zhong L
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-Enhanced Photodynamic Cancer Therapy by Upconversion Nanoparticles Conjugated with Au Nanorods.
    Chen CW; Chan YC; Hsiao M; Liu RS
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32108-32119. PubMed ID: 27933825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy.
    Liang H; Zhou Z; Luo R; Sang M; Liu B; Sun M; Qu W; Feng F; Liu W
    Theranostics; 2018; 8(18):5059-5071. PubMed ID: 30429886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy.
    Tavakkoli Yaraki M; Liu B; Tan YN
    Nanomicro Lett; 2022 May; 14(1):123. PubMed ID: 35513555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamentals and applications of metal nanoparticle- enhanced singlet oxygen generation for improved cancer photodynamic therapy.
    George BP; Chota A; Sarbadhikary P; Abrahamse H
    Front Chem; 2022; 10():964674. PubMed ID: 35936097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted and oxygen-enriched polymeric micelles for enhancing photodynamic therapy.
    Tseng TH; Chen CY; Wu WC; Chen CY
    Nanotechnology; 2021 Jun; 32(36):. PubMed ID: 34137736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating the bacterial oxygen microenvironment via a perfluorocarbon-conjugated bacteriochlorin for enhanced photodynamic antibacterial efficacy.
    Wu M; Chen C; Liu Z; Tian J; Zhang W
    Acta Biomater; 2022 Apr; 142():242-252. PubMed ID: 35183779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy.
    Tian J; Huang B; Cui Z; Wang P; Chen S; Yang G; Zhang W
    Acta Biomater; 2021 Aug; 130():447-459. PubMed ID: 34082096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.