These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36213574)

  • 1. A Methylation Diagnostic Model Based on Random Forests and Neural Networks for Asthma Identification.
    Li DD; Chen T; Ling YL; Jiang Y; Li QG
    Comput Math Methods Med; 2022; 2022():2679050. PubMed ID: 36213574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Verification of a Combined Diagnostic Model for Sarcopenia with Random Forest and Artificial Neural Network.
    Lin S; Chen C; Cai X; Yang F; Fan Y
    Comput Math Methods Med; 2022; 2022():2957731. PubMed ID: 36050999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA methylation and gene expression profiles to identify childhood atopic asthma associated genes.
    Chen R; Piao LZ; Liu L; Zhang XF
    BMC Pulm Med; 2021 Sep; 21(1):292. PubMed ID: 34525985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment and Analysis of an Artificial Neural Network Model for Early Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques.
    Wu Y; Xiao Q; Wang S; Xu H; Fang Y
    J Inflamm Res; 2023; 16():5667-5676. PubMed ID: 38050562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of a Combined Diagnostic Model of Abdominal Aortic Aneurysm with Random Forest and Artificial Neural Network.
    Duan Y; Xie E; Liu C; Sun J; Deng J
    Biomed Res Int; 2022; 2022():7173972. PubMed ID: 35299890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated DNA Methylation and Gene Expression Data for Identification of the Critical Genes Associated with Childhood Atopic Asthma.
    Shi K; Ge MN; Chen XQ
    J Comput Biol; 2020 Jan; 27(1):109-120. PubMed ID: 31460781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of differentially expressed genes regulated by methylation in colon cancer based on bioinformatics analysis.
    Liang Y; Zhang C; Dai DQ
    World J Gastroenterol; 2019 Jul; 25(26):3392-3407. PubMed ID: 31341364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic model based on bioinformatics and machine learning to distinguish Kawasaki disease using multiple datasets.
    Zhang M; Ke B; Zhuo H; Guo B
    BMC Pediatr; 2022 Aug; 22(1):512. PubMed ID: 36042431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a joint diagnostic model of thyroid papillary carcinoma with artificial neural network and random forest.
    Wang S; Liu W; Ye Z; Xia X; Guo M
    Front Genet; 2022; 13():957718. PubMed ID: 36276977
    [No Abstract]   [Full Text] [Related]  

  • 10. Establishment and Analysis of a Combined Diagnostic Model of Polycystic Ovary Syndrome with Random Forest and Artificial Neural Network.
    Xie NN; Wang FF; Zhou J; Liu C; Qu F
    Biomed Res Int; 2020; 2020():2613091. PubMed ID: 32884937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomarker identification and trans-regulatory network analyses in esophageal adenocarcinoma and Barrett's esophagus.
    Lv J; Guo L; Wang JH; Yan YZ; Zhang J; Wang YY; Yu Y; Huang YF; Zhao HP
    World J Gastroenterol; 2019 Jan; 25(2):233-244. PubMed ID: 30670912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The landscape of DNA methylation in asthma: a data mining and validation.
    Yang H; Na FY; Guo L; Liang X; Zhang RF
    Bioengineered; 2021 Dec; 12(2):10063-10072. PubMed ID: 34714718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of the pathogenesis of Sjögren's syndrome via DNA methylation and transcriptome analyses.
    Du Y; Li J; Wu J; Zeng F; He C
    Clin Rheumatol; 2022 Sep; 41(9):2765-2777. PubMed ID: 35562622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a Genetic Biomarker-based Diagnostic Model for Major Depressive Disorder using Random Forests and Artificial Neural Networks.
    Gu W; Ming T; Xie Z
    Comb Chem High Throughput Screen; 2023; 26(2):424-435. PubMed ID: 35379119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of key genes and pathways in castrate-resistant prostate cancer by integrated bioinformatics analysis.
    Wu YP; Ke ZB; Lin F; Wen YA; Chen S; Li XD; Chen SH; Sun XL; Huang JB; Zheng QS; Xue XY; Wei Y; Xu N
    Pathol Res Pract; 2020 Oct; 216(10):153109. PubMed ID: 32853947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of abnormally methylated-differentially expressed genes and pathways in osteoarthritis: a comprehensive bioinformatic study.
    Zheng L; Chen W; Xian G; Pan B; Ye Y; Gu M; Ma Y; Zhang Z; Sheng P
    Clin Rheumatol; 2021 Aug; 40(8):3247-3256. PubMed ID: 33420869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Potential Biomarkers for Ryanodine Receptor 1 (RYR1) Mutation-Associated Myopathies Using Bioinformatics Approach.
    Wang X; Kong C; Liu P; Geng W; Tang H
    Dis Markers; 2022; 2022():8787782. PubMed ID: 35692882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of crucial genes related to heart failure based on GEO database.
    Chen Y; Xue J; Yan X; Fang DG; Li F; Tian X; Yan P; Feng Z
    BMC Cardiovasc Disord; 2023 Jul; 23(1):376. PubMed ID: 37507655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Analysis of Gene Expression and Methylation Data to Identify Potential Biomarkers Related to Atherosclerosis Onset.
    Li X; Dong X; Lu W; Yang K; Li X
    Oxid Med Cell Longev; 2022; 2022():5493051. PubMed ID: 35915606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome‑wide analysis of DNA methylation and gene expression changes in an ovalbumin‑induced asthma mouse model.
    Kim JS; Shin IS; Shin NR; Nam JY; Kim C
    Mol Med Rep; 2020 Sep; 22(3):1709-1716. PubMed ID: 32705270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.