These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36213622)

  • 21. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes.
    Dharmaraj S; Ashokkumar V; Pandiyan R; Halimatul Munawaroh HS; Chew KW; Chen WH; Ngamcharussrivichai C
    Chemosphere; 2021 Jul; 275():130092. PubMed ID: 33984908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated approach for enhanced bio-oil recovery from disposed face masks through co-hydrothermal liquefaction with
    Li L; Huang J; Almutairi AW; Lan X; Zheng L; Lin Y; Chen L; Fu N; Lin Z; Abomohra AE
    Biomass Convers Biorefin; 2021 Sep; ():1-12. PubMed ID: 34603924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation on the use of COVID-19 waste in bituminous concrete.
    Dadwal T; Kumar V; Bhatia U
    Mater Today Proc; 2023; 74():218-224. PubMed ID: 35966411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occurrence of personal protective equipment (PPE) associated with the COVID-19 pandemic along the coast of Lima, Peru.
    De-la-Torre GE; Rakib MRJ; Pizarro-Ortega CI; Dioses-Salinas DC
    Sci Total Environ; 2021 Jun; 774():145774. PubMed ID: 33592402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design.
    Sekar M; Ponnusamy VK; Pugazhendhi A; Nižetić S; Praveenkumar TR
    J Environ Manage; 2022 Jan; 302(Pt B):114046. PubMed ID: 34775338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.
    Breyer S; Mekhitarian L; Rimez B; Haut B
    Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial strategies for degradation of microplastics generated from COVID-19 healthcare waste.
    Dey S; Anand U; Kumar V; Kumar S; Ghorai M; Ghosh A; Kant N; Suresh S; Bhattacharya S; Bontempi E; Bhat SA; Dey A
    Environ Res; 2023 Jan; 216(Pt 1):114438. PubMed ID: 36179880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical upcycling of single-use face mask waste into high-performance composites: An ecofriendly approach with cost-benefit analysis.
    Zabihi O; Patrick R; Ahmadi M; Forrester M; Huxley R; Wei Y; Hadigheh SA; Naebe M
    Sci Total Environ; 2024 Apr; 919():170469. PubMed ID: 38311090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upcycling face mask wastes generated during COVID-19 into value-added engineering materials: A review.
    Pourebrahimi S
    Sci Total Environ; 2022 Dec; 851(Pt 2):158396. PubMed ID: 36055514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment.
    Li C; Yuan X; Sun Z; Suvarna M; Hu X; Wang X; Ok YS
    Bioresour Technol; 2022 Feb; 346():126582. PubMed ID: 34953989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combustion and emission analysis of hydrogenated waste polypropylene pyrolysis oil blended with diesel.
    Mangesh VL; Padmanabhan S; Tamizhdurai P; Narayanan S; Ramesh A
    J Hazard Mater; 2020 Mar; 386():121453. PubMed ID: 31928791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization and Combustion Behavior of Single-Use Masks Used during COVID-19 Pandemic.
    Szefer EM; Majka TM; Pielichowski K
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34201800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrolysis kinetic behaviour and TG-FTIR-GC-MS analysis of Coronavirus Face Masks.
    Yousef S; Eimontas J; Striūgas N; Abdelnaby MA
    J Anal Appl Pyrolysis; 2021 Jun; 156():105118. PubMed ID: 33875899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid fuel oil produced from plastic based medical wastes by thermal cracking.
    Rasul SB; Som U; Hossain MS; Rahman MW
    Sci Rep; 2021 Aug; 11(1):17048. PubMed ID: 34426621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-value utilization of mask and heavy fraction of bio-oil: From hazardous waste to biochar, bio-oil, and graphene films.
    Luo Z; Zhu X; Deng J; Gong K; Zhu X
    J Hazard Mater; 2021 Oct; 420():126570. PubMed ID: 34265650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of upgrading ability and limitations of slow co-pyrolysis: Case of olive mill wastewater sludge/waste tires slow co-pyrolysis.
    Grioui N; Halouani K; Agblevor FA
    Waste Manag; 2019 Jun; 92():75-88. PubMed ID: 31160029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plastic waste as pyrolysis feedstock for plastic oil production: A review.
    Chang SH
    Sci Total Environ; 2023 Jun; 877():162719. PubMed ID: 36933741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines.
    Budsaereechai S; Hunt AJ; Ngernyen Y
    RSC Adv; 2019 Feb; 9(10):5844-5857. PubMed ID: 35515940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resource recovery from discarded COVID-19 PPE kit through catalytic fast pyrolysis.
    Panchal N; Vinu R
    J Anal Appl Pyrolysis; 2023 Mar; 170():105870. PubMed ID: 36686287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal degradation of hazardous 3-layered COVID-19 face mask through pyrolysis: Kinetic, thermodynamic, prediction modelling using ANN and volatile product characterization.
    Nawaz A; Kumar P
    J Taiwan Inst Chem Eng; 2022 Oct; 139():104538. PubMed ID: 36193262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.