These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 36213816)

  • 1. Emerging Therapies for Huntington's Disease - Focus on N-Terminal Huntingtin and Huntingtin Exon 1.
    van der Bent ML; Evers MM; Vallès A
    Biologics; 2022; 16():141-160. PubMed ID: 36213816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberrant splicing of mutant huntingtin in Huntington's disease knock-in pigs.
    Tong H; Yang T; Liu L; Li C; Sun Y; Jia Q; Qin Y; Chen L; Zhao X; Zhou G; Yan S; Li XJ; Li S
    Neurobiol Dis; 2023 Oct; 187():106291. PubMed ID: 37716514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrantly spliced HTT, a new player in Huntington's disease pathogenesis.
    Gipson TA; Neueder A; Wexler NS; Bates GP; Housman D
    RNA Biol; 2013 Nov; 10(11):1647-52. PubMed ID: 24256709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities.
    Tabrizi SJ; Estevez-Fraga C; van Roon-Mom WMC; Flower MD; Scahill RI; Wild EJ; Muñoz-Sanjuan I; Sampaio C; Rosser AE; Leavitt BR
    Lancet Neurol; 2022 Jul; 21(7):645-658. PubMed ID: 35716694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification.
    Evers MM; Tran HD; Zalachoras I; Meijer OC; den Dunnen JT; van Ommen GJ; Aartsma-Rus A; van Roon-Mom WM
    Nucleic Acid Ther; 2014 Feb; 24(1):4-12. PubMed ID: 24380395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of novel bioassays to detect soluble and aggregated Huntingtin proteins on three technology platforms.
    Landles C; Milton RE; Jean A; McLarnon S; McAteer SJ; Taxy BA; Osborne GF; Zhang C; Duan W; Howland D; Bates GP
    Brain Commun; 2021; 3(1):fcaa231. PubMed ID: 33604571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies.
    Wright GEB; Black HF; Collins JA; Gall-Duncan T; Caron NS; Pearson CE; Hayden MR
    Lancet Neurol; 2020 Nov; 19(11):930-939. PubMed ID: 33098802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Huntington's disease: from pathology and genetics to potential therapies.
    Imarisio S; Carmichael J; Korolchuk V; Chen CW; Saiki S; Rose C; Krishna G; Davies JE; Ttofi E; Underwood BR; Rubinsztein DC
    Biochem J; 2008 Jun; 412(2):191-209. PubMed ID: 18466116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington's disease.
    Barbaro BA; Lukacsovich T; Agrawal N; Burke J; Bornemann DJ; Purcell JM; Worthge SA; Caricasole A; Weiss A; Song W; Morozova OA; Colby DW; Marsh JL
    Hum Mol Genet; 2015 Feb; 24(4):913-25. PubMed ID: 25305076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments.
    Butler DC; Messer A
    PLoS One; 2011; 6(12):e29199. PubMed ID: 22216210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture.
    Cooper JK; Schilling G; Peters MF; Herring WJ; Sharp AH; Kaminsky Z; Masone J; Khan FA; Delanoy M; Borchelt DR; Dawson VL; Dawson TM; Ross CA
    Hum Mol Genet; 1998 May; 7(5):783-90. PubMed ID: 9536081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reviewing Biochemical Implications of Normal and Mutated Huntingtin in Huntington's Disease.
    Tellone E; Galtieri A; Ficarra S
    Curr Med Chem; 2020; 27(31):5137-5158. PubMed ID: 31223078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive biochemical aggregate detection reveals aggregation onset before symptom development in cellular and murine models of Huntington's disease.
    Weiss A; Klein C; Woodman B; Sathasivam K; Bibel M; Régulier E; Bates GP; Paganetti P
    J Neurochem; 2008 Feb; 104(3):846-58. PubMed ID: 17986219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The long and the short of Huntington's disease: how the sphingolipid profile is shifted in the caudate of advanced clinical cases.
    Phillips GR; Saville JT; Hancock SE; Brown SHJ; Jenner AM; McLean C; Fuller M; Newell KA; Mitchell TW
    Brain Commun; 2022; 4(1):fcab303. PubMed ID: 35169703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular Localization And Formation Of Huntingtin Aggregates Correlates With Symptom Onset And Progression In A Huntington'S Disease Model.
    Landles C; Milton RE; Ali N; Flomen R; Flower M; Schindler F; Gomez-Paredes C; Bondulich MK; Osborne GF; Goodwin D; Salsbury G; Benn CL; Sathasivam K; Smith EJ; Tabrizi SJ; Wanker EE; Bates GP
    Brain Commun; 2020; 2(2):fcaa066. PubMed ID: 32954323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
    Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of huntingtin exon 1 phosphorylation by Phos-Tag SDS-PAGE: Predominant phosphorylation on threonine 3 and regulation by IKKβ.
    Bustamante MB; Ansaloni A; Pedersen JF; Azzollini L; Cariulo C; Wang ZM; Petricca L; Verani M; Puglisi F; Park H; Lashuel H; Caricasole A
    Biochem Biophys Res Commun; 2015 Aug; 463(4):1317-22. PubMed ID: 26106822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease.
    Yu ZX; Li SH; Evans J; Pillarisetti A; Li H; Li XJ
    J Neurosci; 2003 Mar; 23(6):2193-202. PubMed ID: 12657678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat.
    Clemens LE; Weber JJ; Wlodkowski TT; Yu-Taeger L; Michaud M; Calaminus C; Eckert SH; Gaca J; Weiss A; Magg JC; Jansson EK; Eckert GP; Pichler BJ; Bordet T; Pruss RM; Riess O; Nguyen HP
    Brain; 2015 Dec; 138(Pt 12):3632-53. PubMed ID: 26490331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington's disease.
    Ho LW; Brown R; Maxwell M; Wyttenbach A; Rubinsztein DC
    J Med Genet; 2001 Jul; 38(7):450-2. PubMed ID: 11432963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.