These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36214526)

  • 21. Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties.
    Lu SY; Chien LC
    Opt Express; 2008 Aug; 16(17):12777-85. PubMed ID: 18711517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liquid Crystal Enabled Dynamic Nanodevices.
    Ma Z; Meng X; Liu X; Si G; Liu YJ
    Nanomaterials (Basel); 2018 Oct; 8(11):. PubMed ID: 30360573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation.
    Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A biopotential optrode array: operation principles and simulations.
    Al Abed A; Srinivas H; Firth J; Ladouceur F; Lovell NH; Silvestri L
    Sci Rep; 2018 Feb; 8(1):2690. PubMed ID: 29426924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soft periodic microstructures containing liquid crystals.
    De Sio L; Ferjani S; Strangi G; Umeton C; Bartolino R
    J Phys Chem B; 2013 Jan; 117(4):1176-85. PubMed ID: 23297737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comprehensive Review on the Optical Micro-Electromechanical Sensors for the Biomedical Application.
    Upadhyaya AM; Hasan MK; Abdel-Khalek S; Hassan R; Srivastava MC; Sharan P; Islam S; Saad AME; Vo N
    Front Public Health; 2021; 9():759032. PubMed ID: 34926383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resonant model-A new paradigm for modeling an action potential of biological cells.
    Sehgal S; Patel ND; Malik A; Roop PS; Trew ML
    PLoS One; 2019; 14(5):e0216999. PubMed ID: 31116780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo localization of fascicular activity.
    Wodlinger B; Durand DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2940-2. PubMed ID: 19964606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Texture recognition and localization in amorphous robotic skin.
    Hughes D; Correll N
    Bioinspir Biomim; 2015 Sep; 10(5):055002. PubMed ID: 26352901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dense Packed Drivable Optrode Array for Precise Optical Stimulation and Neural Recording in Multiple-Brain Regions.
    Wang L; Ge C; Wang F; Guo Z; Hong W; Jiang C; Ji B; Wang M; Li C; Sun B; Liu J
    ACS Sens; 2021 Nov; 6(11):4126-4135. PubMed ID: 34779610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liquid Crystal Biosensors: Principles, Structure and Applications.
    Wang H; Xu T; Fu Y; Wang Z; Leeson MS; Jiang J; Liu T
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct interfacial ordering of liquid crystals observed by protein-lipid interactions that enabled the label-free sensing of cytoplasmic protein at the liquid crystal-aqueous interface.
    Devi M; Verma I; Pal SK
    Analyst; 2021 Nov; 146(23):7152-7159. PubMed ID: 34734590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-frequency converter using a liquid crystal cell as a sensing element.
    Marcos C; Sánchez Pena JM; Torres JC; Isidro Santos J
    Sensors (Basel); 2012; 12(3):3204-14. PubMed ID: 22737002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensing of cocaine using polarized optical microscopy by exploiting the conformational changes of an aptamer at the water/liquid crystal interface.
    Wang S; Zhang G; Chen Q; Zhou J; Wu Z
    Mikrochim Acta; 2019 Oct; 186(11):724. PubMed ID: 31655900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic sensing devices employing in situ-formed liquid crystal thin film for detection of biochemical interactions.
    Liu Y; Cheng D; Lin IH; Abbott NL; Jiang H
    Lab Chip; 2012 Oct; 12(19):3746-53. PubMed ID: 22842797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro- and nanofibers and liquid crystals for light-scattering shutters: simulation of electro-optical properties.
    Almeida PL; Godinho MH; Figueirinhas JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012507. PubMed ID: 24580246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.
    Tadayon MA; Ashkenazi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):2021-30. PubMed ID: 24658733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA.
    Wang Y; Zhou L; Kang Q; Yu L
    Talanta; 2018 Jun; 183():223-227. PubMed ID: 29567168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.