BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 36214665)

  • 1. N-myc downstream regulated gene 1 (ndrg1) functions as a molecular switch for cellular adaptation to hypoxia.
    Park JS; Gabel AM; Kassir P; Kang L; Chowdhary PK; Osei-Ntansah A; Tran ND; Viswanathan S; Canales B; Ding P; Lee YS; Brewster R
    Elife; 2022 Oct; 11():. PubMed ID: 36214665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression and hypoxia-mediated regulation of the N-myc downstream regulated gene family.
    Le N; Hufford TM; Park JS; Brewster RM
    FASEB J; 2021 Nov; 35(11):e21961. PubMed ID: 34665878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxic conformance of metabolism in primary rat hepatocytes: a model of hepatic hibernation.
    Subramanian RM; Chandel N; Budinger GR; Schumacker PT
    Hepatology; 2007 Feb; 45(2):455-64. PubMed ID: 17366663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-dependent energetics of anoxia-tolerant and anoxia-intolerant hepatocytes.
    Krumschnabel G; Schwarzbaum PJ; Lisch J; Biasi C; Wieser W
    J Exp Biol; 2000 Mar; 203(Pt 5):951-9. PubMed ID: 10667979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+)-K(+) pump and metabolic activities of trout erythrocytes during anoxia.
    Pesquero J; Roig T; Sánchez J; Bermúdez J
    Am J Physiol; 1999 Jul; 277(1):C29-34. PubMed ID: 10409105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-metabolic coupling and ion homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes.
    Krumschnabel G; Biasi C; Schwarzbaum PJ; Wieser W
    Am J Physiol; 1996 Mar; 270(3 Pt 2):R614-20. PubMed ID: 8780228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Coupling of membranous and metabolic functions in nucleated erythrocytes of Scorpaena porcus L. in hypoxia (experiments in vivo and in vitro)].
    Soldatov AA; Andreeva AY; Novitskaya VN; Parfenova IA
    Zh Evol Biokhim Fiziol; 2014; 50(5):358-63. PubMed ID: 25786318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia decreases cellular ATP demand and inhibits mitochondrial respiration of a549 cells.
    Heerlein K; Schulze A; Hotz L; Bärtsch P; Mairbäurl H
    Am J Respir Cell Mol Biol; 2005 Jan; 32(1):44-51. PubMed ID: 15388515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impairment of cation transport in A549 cells and rat alveolar epithelial cells by hypoxia.
    Mairbäurl H; Wodopia R; Eckes S; Schulz S; Bärtsch P
    Am J Physiol; 1997 Oct; 273(4):L797-806. PubMed ID: 9357855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine as a signal for ion channel arrest in anoxia-tolerant organisms.
    Buck LT
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Nov; 139(3):401-14. PubMed ID: 15544964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic responses of Na+/K+ ATPase in trout hepatocytes.
    Bogdanova A; Grenacher B; Nikinmaa M; Gassmann M
    J Exp Biol; 2005 May; 208(Pt 10):1793-801. PubMed ID: 15879061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of anoxia and ATP depletion on the membrane potential and permeability of dog liver.
    Lambotte L
    J Physiol; 1977 Jul; 269(1):53-76. PubMed ID: 894569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of anoxia-induced channel arrest in the brain of the goldfish (Carassius auratus).
    Wilkie MP; Pamenter ME; Alkabie S; Carapic D; Shin DS; Buck LT
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):355-62. PubMed ID: 18620076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory proteome adjustments imply tissue-specific structural and metabolic reorganization following episodic hypoxia or anoxia in the epaulette shark (Hemiscyllium ocellatum).
    Dowd WW; Renshaw GM; Cech JJ; Kültz D
    Physiol Genomics; 2010 Jun; 42(1):93-114. PubMed ID: 20371547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states.
    Guo Y; Zhang Y; Yan R; Huang B; Ye F; Wu L; Chi X; Shi Y; Zhou Q
    Nat Commun; 2022 Jul; 13(1):3957. PubMed ID: 35803952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs.
    Ivanina AV; Nesmelova I; Leamy L; Sokolov EP; Sokolova IM
    J Exp Biol; 2016 Jun; 219(Pt 11):1659-74. PubMed ID: 27252455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-K+-ATPase activity in medullary thick ascending limb during short-term anoxia.
    Chamberlin ME; Mandel LJ
    Am J Physiol; 1987 May; 252(5 Pt 2):F838-43. PubMed ID: 3034075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxic Stress-Dependent Regulation of Na,K-ATPase in Ischemic Heart Disease.
    Baloglu E
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial regulation of oxygen sensing.
    Chandel NS
    Adv Exp Med Biol; 2010; 661():339-54. PubMed ID: 20204741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.