These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 36214681)

  • 1. Role of Enzymatic Activity in the Biological Cost Associated with the Production of AmpC β-Lactamases in Pseudomonas aeruginosa.
    Barceló IM; Jordana-Lluch E; Escobar-Salom M; Torrens G; Fraile-Ribot PA; Cabot G; Mulet X; Zamorano L; Juan C; Oliver A
    Microbiol Spectr; 2022 Oct; 10(5):e0270022. PubMed ID: 36214681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Peptidoglycan Recycling Blockade and Expression of Horizontally Acquired β-Lactamases on Pseudomonas aeruginosa Virulence.
    Barceló IM; Torrens G; Escobar-Salom M; Jordana-Lluch E; Capó-Bauzá MM; Ramón-Pallín C; García-Cuaresma D; Fraile-Ribot PA; Mulet X; Oliver A; Juan C
    Microbiol Spectr; 2022 Feb; 10(1):e0201921. PubMed ID: 35171032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of AmpC β-Lactamase Variants and Metallo-β-Lactamases Leading to Ceftolozane/Tazobactam and Ceftazidime/Avibactam Resistance during Treatment of MDR/XDR Pseudomonas aeruginosa Infections.
    Ruedas-López A; Alonso-García I; Lasarte-Monterrubio C; Guijarro-Sánchez P; Gato E; Vázquez-Ucha JC; Vallejo JA; Fraile-Ribot PA; Fernández-Pérez B; Velasco D; Gutiérrez-Urbón JM; Oviaño M; Beceiro A; González-Bello C; Oliver A; Arca-Suárez J; Bou G
    Antimicrob Agents Chemother; 2022 Feb; 66(2):e0206721. PubMed ID: 34930034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam.
    Slater CL; Winogrodzki J; Fraile-Ribot PA; Oliver A; Khajehpour M; Mark BL
    Antimicrob Agents Chemother; 2020 Aug; 64(9):. PubMed ID: 32660987
    [No Abstract]   [Full Text] [Related]  

  • 5. Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa.
    Barnes MD; Taracila MA; Rutter JD; Bethel CR; Galdadas I; Hujer AM; Caselli E; Prati F; Dekker JP; Papp-Wallace KM; Haider S; Bonomo RA
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538183
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of AmpC β-lactamase mutations of extensively drug-resistant Pseudomonas aeruginosa isolates that develop resistance to ceftolozane/tazobactam during therapy.
    Fernández-Esgueva M; López-Calleja AI; Mulet X; Fraile-Ribot PA; Cabot G; Huarte R; Rezusta A; Oliver A
    Enferm Infecc Microbiol Clin (Engl Ed); 2020 Dec; 38(10):474-478. PubMed ID: 32143893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?
    Pérez-Gallego M; Torrens G; Castillo-Vera J; Moya B; Zamorano L; Cabot G; Hultenby K; Albertí S; Mellroth P; Henriques-Normark B; Normark S; Oliver A; Juan C
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of
    Wang L; Zhang X; Zhou X; Yang F; Guo Q; Wang M
    Microbiol Spectr; 2023 Jun; 11(3):e0093223. PubMed ID: 37199669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic analysis of resistance to ceftazidime/avibactam, ceftolozane/tazobactam and carbapenems in piperacillin/tazobactam-resistant Pseudomonas aeruginosa from cystic fibrosis patients.
    Zamudio R; Hijazi K; Joshi C; Aitken E; Oggioni MR; Gould IM
    Int J Antimicrob Agents; 2019 Jun; 53(6):774-780. PubMed ID: 30831233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous and divergent evolution of resistance to cephalosporin/β-lactamase inhibitor combinations and imipenem/relebactam following ceftazidime/avibactam treatment of MDR Pseudomonas aeruginosa infections.
    Alonso-García I; Vázquez-Ucha JC; Lasarte-Monterrubio C; González-Mayo E; Lada-Salvador P; Vela-Fernández R; Aja-Macaya P; Guijarro-Sánchez P; Rumbo-Feal S; Muíño-Andrade M; Fernández-González A; Martínez-Guitián M; Beceiro A; Rodríguez-Iglesias M; Oliver A; Arca-Suárez J; Galán-Sánchez F; Bou G
    J Antimicrob Chemother; 2023 May; 78(5):1195-1200. PubMed ID: 36918743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa.
    Fraile-Ribot PA; Cabot G; Mulet X; Periañez L; Martín-Pena ML; Juan C; Pérez JL; Oliver A
    J Antimicrob Chemother; 2018 Mar; 73(3):658-663. PubMed ID: 29149337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferable AmpCs in
    Barceló IM; Escobar-Salom M; Cabot G; Perelló-Bauzà P; Jordana-Lluch E; Taltavull B; Torrens G; Rojo-Molinero E; Zamorano L; Pérez A; Oliver A; Juan C
    Antimicrob Agents Chemother; 2024 May; 68(5):e0131523. PubMed ID: 38517189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and Structural Characterization of OXA-935, a Novel OXA-10-Family β-Lactamase from Pseudomonas aeruginosa.
    Pincus NB; Rosas-Lemus M; Gatesy SWM; Bertucci HK; Brunzelle JS; Minasov G; Shuvalova LA; Lebrun-Corbin M; Satchell KJF; Ozer EA; Hauser AR; Bachta KER
    Antimicrob Agents Chemother; 2022 Oct; 66(10):e0098522. PubMed ID: 36129295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial Activity of Ceftolozane-Tazobactam, Ceftazidime-Avibactam, and Cefiderocol against Multidrug-Resistant Pseudomonas aeruginosa Recovered at a German University Hospital.
    Weber C; Schultze T; Göttig S; Kessel J; Schröder A; Tietgen M; Besier S; Burbach T; Häussler S; Wichelhaus TA; Hack D; Kempf VAJ; Hogardt M
    Microbiol Spectr; 2022 Oct; 10(5):e0169722. PubMed ID: 36190424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa.
    Ortiz de la Rosa JM; Nordmann P; Poirel L
    J Antimicrob Chemother; 2019 Jul; 74(7):1934-1939. PubMed ID: 31225611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial resistance of Pseudomonas aeruginosa in a cystic fibrosis population after introduction of a novel cephalosporin/β-lactamase inhibitor combination.
    Katzenstein TL; Faurholt-Jepsen D; Qvist T; Jensen PØ; Pressler T; Johansen HK; Kolpen M
    APMIS; 2023 Aug; 131(8):419-425. PubMed ID: 37294911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of Ceftolozane-Tazobactam-Resistant Pseudomonas aeruginosa during Treatment Is Mediated by a Single AmpC Structural Mutation.
    MacVane SH; Pandey R; Steed LL; Kreiswirth BN; Chen L
    Antimicrob Agents Chemother; 2017 Dec; 61(12):. PubMed ID: 28947473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins.
    Berrazeg M; Jeannot K; Ntsogo Enguéné VY; Broutin I; Loeffert S; Fournier D; Plésiat P
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6248-55. PubMed ID: 26248364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenging Antimicrobial Susceptibility and Evolution of Resistance (OXA-681) during Treatment of a Long-Term Nosocomial Infection Caused by a Pseudomonas aeruginosa ST175 Clone.
    Arca-Suárez J; Fraile-Ribot P; Vázquez-Ucha JC; Cabot G; Martínez-Guitián M; Lence E; González-Bello C; Beceiro A; Rodríguez-Iglesias M; Galán-Sánchez F; Bou G; Oliver A
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31383659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis.
    Chalhoub H; Sáenz Y; Nichols WW; Tulkens PM; Van Bambeke F
    Int J Antimicrob Agents; 2018 Nov; 52(5):697-701. PubMed ID: 30081137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.