BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 36214703)

  • 1. Corner Flows Induced by Surfactant-Producing Bacteria Bacillus subtilis and Pseudomonas fluorescens.
    Li Y; Sanfilippo JE; Kearns D; Yang JQ
    Microbiol Spectr; 2022 Oct; 10(5):e0323322. PubMed ID: 36214703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for biosurfactant-induced flow in corners and bacterial spreading in unsaturated porous media.
    Yang JQ; Sanfilippo JE; Abbasi N; Gitai Z; Bassler BL; Stone HA
    Proc Natl Acad Sci U S A; 2021 Sep; 118(38):. PubMed ID: 34531326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability.
    Das K; Mukherjee AK
    J Appl Microbiol; 2007 Jan; 102(1):195-203. PubMed ID: 17184335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater.
    Vasileva-Tonkova E; Sotirova A; Galabova D
    Curr Microbiol; 2011 Feb; 62(2):427-33. PubMed ID: 20680280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Production of Biosurfactant from
    Al-Dhabi NA; Esmail GA; Valan Arasu M
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33203064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.
    Mnif I; Mnif S; Sahnoun R; Maktouf S; Ayedi Y; Ellouze-Chaabouni S; Ghribi D
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):14852-61. PubMed ID: 25994261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited Role of Rhamnolipids on Cadmium Resistance for an Endogenous-Secretion Bacterium.
    Xing S; Yan Z; Song C; Tian H; Wang S
    Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36231857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field evaluation of biosurfactants, surfactin and di-rhamnolipid produced by
    Kumar A; Kumar H; Manonmani AM; Prabakaran G; Vijayakumar B; Mathivanan A; Geetha I; Jambulingam P
    J Vector Borne Dis; 2022; 59(3):246-252. PubMed ID: 36511041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of rhamnolipids from Pseudomonas aeruginosa DS10-129 on luminescent bacteria: toxicity and modulation of cadmium bioavailability.
    Bondarenko O; Rahman PK; Rahman TJ; Kahru A; Ivask A
    Microb Ecol; 2010 Apr; 59(3):588-600. PubMed ID: 20082071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosurfactant Production Using Mutant Strains of
    Adejumo SA; Oli AN; Okoye EI; Nwakile CD; Ojiako CM; Okezie UM; Okeke IJ; Ofomata CM; Attama AA; Okoyeh JN; Esimone CO
    Adv Pharm Bull; 2021 May; 11(3):543-556. PubMed ID: 34513630
    [No Abstract]   [Full Text] [Related]  

  • 12. Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization.
    Sharma D; Ansari MJ; Al-Ghamdi A; Adgaba N; Khan KA; Pruthi V; Al-Waili N
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17636-43. PubMed ID: 26146372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of conditions for a surfactant-producing strain and application to petroleum hydrocarbon-contaminated soil bioremediation.
    Wang Y; Wu S; Wang H; Dong Y; Li X; Wang S; Fan H; Zhuang X
    Colloids Surf B Biointerfaces; 2022 May; 213():112428. PubMed ID: 35231686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it's potential for oil contaminated soil remediation.
    Phulpoto IA; Yu Z; Hu B; Wang Y; Ndayisenga F; Li J; Liang H; Qazi MA
    Microb Cell Fact; 2020 Jul; 19(1):145. PubMed ID: 32690027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Biosurfactants-an Ecofriendly Boon to Industries for Green Revolution.
    Sharma P; Sharma N
    Recent Pat Biotechnol; 2020; 14(3):169-183. PubMed ID: 31830890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production.
    Henkel M; Geissler M; Weggenmann F; Hausmann R
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28544628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.
    De Rienzo MA; Martin PJ
    Curr Microbiol; 2016 Aug; 73(2):183-9. PubMed ID: 27113589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation.
    Eddouaouda K; Mnif S; Badis A; Younes SB; Cherif S; Ferhat S; Mhiri N; Chamkha M; Sayadi S
    J Basic Microbiol; 2012 Aug; 52(4):408-18. PubMed ID: 22052657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil.
    Whang LM; Liu PW; Ma CC; Cheng SS
    J Hazard Mater; 2008 Feb; 151(1):155-63. PubMed ID: 17614195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental applications for biosurfactants.
    Mulligan CN
    Environ Pollut; 2005 Jan; 133(2):183-98. PubMed ID: 15519450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.