BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 36214703)

  • 21. Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains.
    Sotirova AV; Spasova DI; Galabova DN; Karpenko E; Shulga A
    Curr Microbiol; 2008 Jun; 56(6):639-44. PubMed ID: 18330632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant.
    Prabhawathi V; Thirunavukarasu K; Doble M
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():212-8. PubMed ID: 24857485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities.
    Simpson DR; Natraj NR; McInerney MJ; Duncan KE
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1083-93. PubMed ID: 21562978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The destruction of mono- and polycyclic aromatic hydrocarbons by cultures of Pseudomonas fluorescens 1-D biovar II and Bacillus subtilis 2-D].
    Dumans'ka TU
    Mikrobiol Z; 1995; 57(1):95-101. PubMed ID: 7728279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a biosurfactant producing strain: Bacillus subtilis HOB2.
    Haddad NI; Wang J; Mu B
    Protein Pept Lett; 2009; 16(1):7-13. PubMed ID: 19149667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production.
    Moya Ramírez I; Altmajer Vaz D; Banat IM; Marchant R; Jurado Alameda E; García Román M
    Bioresour Technol; 2016 Apr; 205():1-6. PubMed ID: 26796482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass.
    Sodagari M; Wang H; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2013 Mar; 103():121-8. PubMed ID: 23201728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome annotation and comparative genomic analysis of Bacillus subtilis MJ01, a new bio-degradation strain isolated from oil-contaminated soil.
    Rahimi T; Niazi A; Deihimi T; Taghavi SM; Ayatollahi S; Ebrahimie E
    Funct Integr Genomics; 2018 Sep; 18(5):533-543. PubMed ID: 29730772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India.
    Das K; Mukherjee AK
    Bioresour Technol; 2007 May; 98(7):1339-45. PubMed ID: 16828284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Bacillus subtilis O9 biosurfactant on the bioremediation of crude oil-polluted soils.
    Cubitto MA; Morán AC; Commendatore M; Chiarello MN; Baldini MD; Siñeriz F
    Biodegradation; 2004 Oct; 15(5):281-7. PubMed ID: 15523911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil.
    Machado TS; Decesaro A; Cappellaro ÂC; Machado BS; van Schaik Reginato K; Reinehr CO; Thomé A; Colla LM
    Ecotoxicol Environ Saf; 2020 Sep; 201():110798. PubMed ID: 32526591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water Stress-Driven Changes in Bacterial Cell Surface Properties.
    Karagulyan M; Goebel MO; Diehl D; Abu Quba AA; Kästner M; Bachmann J; Wick LY; Schaumann GE; Miltner A
    Appl Environ Microbiol; 2022 Nov; 88(21):e0073222. PubMed ID: 36226960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.
    Singh AK; Cameotra SS
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7367-76. PubMed ID: 23681773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surfactin Shows Relatively Low Antimicrobial Activity against
    Lilge L; Ersig N; Hubel P; Aschern M; Pillai E; Klausmann P; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R
    Microorganisms; 2022 Apr; 10(4):. PubMed ID: 35456828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production and properties of biosurfactants from a newly isolated Pseudomonas fluorescens HW-6 growing on hexadecane.
    Vasileva-Tonkova E; Galabova D; Stoimenova E; Lalchev Z
    Z Naturforsch C J Biosci; 2006; 61(7-8):553-9. PubMed ID: 16989316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustainable Production of Biosurfactant from Agro-Industrial Oil Wastes by
    Ciurko D; Czyżnikowska Ż; Kancelista A; Łaba W; Janek T
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.
    Bezza FA; Chirwa EM
    Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioprospecting of the Antarctic Bacillus subtilis strain for potential application in leaching hydrocarbons and trace elements from contaminated environments based on functional and genomic analysis.
    Krucoń T; Ruszkowska Z; Pilecka W; Szych A; Drewniak Ł
    Environ Res; 2023 Jun; 227():115785. PubMed ID: 36997039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains.
    da Silva FS; Pylro VS; Fernandes PL; Barcelos GS; Kalks KH; Schaefer CE; Tótola MR
    Extremophiles; 2015 May; 19(3):561-72. PubMed ID: 25701018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil.
    Chang JS; Cha DK; Radosevich M; Jin Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):611-6. PubMed ID: 25837563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.