These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36214757)
1. An Atomistic Picture of Boron Oxide Catalysts for Oxidative Dehydrogenation Revealed by Ultrahigh Field Dorn RW; Mark LO; Hung I; Cendejas MC; Xu Y; Gor'kov PL; Mao W; Ibrahim F; Gan Z; Hermans I; Rossini AJ J Am Chem Soc; 2022 Oct; 144(41):18766-18771. PubMed ID: 36214757 [TBL] [Abstract][Full Text] [Related]
2. Structure Determination of Boron-Based Oxidative Dehydrogenation Heterogeneous Catalysts with Ultra-High Field 35.2 T Dorn RW; Cendejas MC; Chen K; Hung I; Altvater NR; McDermott WP; Gan Z; Hermans I; Rossini AJ ACS Catal; 2020 Dec; 10(23):13852-13866. PubMed ID: 34413990 [TBL] [Abstract][Full Text] [Related]
3. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation. Venegas JM; McDermott WP; Hermans I Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416 [TBL] [Abstract][Full Text] [Related]
4. Probing the Transformation of Boron Nitride Catalysts under Oxidative Dehydrogenation Conditions. Love AM; Thomas B; Specht SE; Hanrahan MP; Venegas JM; Burt SP; Grant JT; Cendejas MC; McDermott WP; Rossini AJ; Hermans I J Am Chem Soc; 2019 Jan; 141(1):182-190. PubMed ID: 30525543 [TBL] [Abstract][Full Text] [Related]
5. B-MWW Zeolite: The Case Against Single-Site Catalysis. Altvater NR; Dorn RW; Cendejas MC; McDermott WP; Thomas B; Rossini AJ; Hermans I Angew Chem Int Ed Engl; 2020 Apr; 59(16):6546-6550. PubMed ID: 32026560 [TBL] [Abstract][Full Text] [Related]
6. Solid-state NMR analysis of a boron-containing pharmaceutical hydrochloride salt. Vogt FG; Williams GR; Copley RC J Pharm Sci; 2013 Oct; 102(10):3705-16. PubMed ID: 23918278 [TBL] [Abstract][Full Text] [Related]
7. Analysis of atomic scale chemical environments of boron in coal by 11B solid state NMR. Takahashi T; Kashiwakura S; Kanehashi K; Hayashi S; Nagasaka T Environ Sci Technol; 2011 Feb; 45(3):890-5. PubMed ID: 21175186 [TBL] [Abstract][Full Text] [Related]
8. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts. Shi L; Wang Y; Yan B; Song W; Shao D; Lu AH Chem Commun (Camb); 2018 Sep; 54(78):10936-10946. PubMed ID: 30124691 [TBL] [Abstract][Full Text] [Related]
9. Isolated boron in zeolite for oxidative dehydrogenation of propane. Zhou H; Yi X; Hui Y; Wang L; Chen W; Qin Y; Wang M; Ma J; Chu X; Wang Y; Hong X; Chen Z; Meng X; Wang H; Zhu Q; Song L; Zheng A; Xiao FS Science; 2021 Apr; 372(6537):76-80. PubMed ID: 33795454 [TBL] [Abstract][Full Text] [Related]
10. Water-Tolerant Boron-Substituted MCM-41 for Oxidative Dehydrogenation of Propane. Liu Q; Wang J; Liu Z; Zhao R; Xu A; Jia M ACS Omega; 2022 Jan; 7(3):3083-3092. PubMed ID: 35097303 [TBL] [Abstract][Full Text] [Related]
11. Why Boron Nitride is such a Selective Catalyst for the Oxidative Dehydrogenation of Propane. Venegas JM; Zhang Z; Agbi TO; McDermott WP; Alexandrova A; Hermans I Angew Chem Int Ed Engl; 2020 Sep; 59(38):16527-16535. PubMed ID: 32573006 [TBL] [Abstract][Full Text] [Related]
12. Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation. Gao X; Zhu L; Yang F; Zhang L; Xu W; Zhou X; Huang Y; Song H; Lin L; Wen X; Ma D; Yao S Nat Commun; 2023 Mar; 14(1):1478. PubMed ID: 36932098 [TBL] [Abstract][Full Text] [Related]
13. Residual dipolar coupling between quadrupolar nuclei under magic-angle spinning and double-rotation conditions. Perras FA; Bryce DL J Magn Reson; 2011 Dec; 213(1):82-9. PubMed ID: 21982836 [TBL] [Abstract][Full Text] [Related]
14. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Grant JT; Carrero CA; Goeltl F; Venegas J; Mueller P; Burt SP; Specht SE; McDermott WP; Chieregato A; Hermans I Science; 2016 Dec; 354(6319):1570-1573. PubMed ID: 27934702 [TBL] [Abstract][Full Text] [Related]
15. Plasma Tuning Local Environment of Hexagonal Boron Nitride for Oxidative Dehydrogenation of Propane. Liu Z; Yan B; Meng S; Liu R; Lu WD; Sheng J; Yi Y; Lu AH Angew Chem Int Ed Engl; 2021 Sep; 60(36):19691-19695. PubMed ID: 34197682 [TBL] [Abstract][Full Text] [Related]
16. Engineering O-O Species in Boron Nitrous Nanotubes Increases Olefins for Propane Oxidative Dehydrogenation. Li P; Zhang X; Wang J; Xue Y; Yao Y; Chai S; Zhou B; Wang X; Zheng N; Yao J J Am Chem Soc; 2022 Apr; 144(13):5930-5936. PubMed ID: 35316601 [TBL] [Abstract][Full Text] [Related]
17. In Situ Generated Boron Peroxo as Mild Oxidant in Propane Oxidative Dehydrogenation Revealed by Density Functional Theory Study. Liu Y; Liu Z; Lu WD; Wang D; Lu AH J Phys Chem Lett; 2022 Dec; 13(50):11729-11735. PubMed ID: 36512686 [TBL] [Abstract][Full Text] [Related]
18. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor. Carrero CA; Keturakis CJ; Orrego A; Schomäcker R; Wachs IE Dalton Trans; 2013 Sep; 42(35):12644-53. PubMed ID: 23652298 [TBL] [Abstract][Full Text] [Related]
19. Off-Stoichiometric Restructuring and Sliding Dynamics of Hexagonal Boron Nitride Edges in Conditions of Oxidative Dehydrogenation of Propane. Zhang Z; Hermans I; Alexandrova AN J Am Chem Soc; 2023 Aug; 145(31):17265-17273. PubMed ID: 37506379 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanofibers modified with heteroatoms as metal-free catalysts for the oxidative dehydrogenation of propane. Marco Y; Roldán L; Muñoz E; García-Bordejé E ChemSusChem; 2014 Sep; 7(9):2496-504. PubMed ID: 25138580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]