These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 36215032)

  • 21. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 23. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of
    Liang Y; Wei Y; Jiao S; Yu H
    Synth Syst Biotechnol; 2021 Sep; 6(3):200-208. PubMed ID: 34430726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harnessing CRISPR-Cas9 for Genome Editing in Streptococcus pneumoniae D39V.
    Synefiaridou D; Veening JW
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A plasmid toolset for CRISPR-mediated genome editing and CRISPRi gene regulation in Escherichia coli.
    Jervis AJ; Hanko EKR; Dunstan MS; Robinson CJ; Takano E; Scrutton NS
    Microb Biotechnol; 2021 May; 14(3):1120-1129. PubMed ID: 33710766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome Editing of Veterinary Relevant Mycoplasmas Using a CRISPR-Cas Base Editor System.
    Ipoutcha T; Rideau F; Gourgues G; Arfi Y; Lartigue C; Blanchard A; Sirand-Pugnet P
    Appl Environ Microbiol; 2022 Sep; 88(17):e0099622. PubMed ID: 36000854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Portable CRISPR-Cas9
    Goh YJ; Barrangou R
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli.
    Zerbini F; Zanella I; Fraccascia D; König E; Irene C; Frattini LF; Tomasi M; Fantappiè L; Ganfini L; Caproni E; Parri M; Grandi A; Grandi G
    Microb Cell Fact; 2017 Apr; 16(1):68. PubMed ID: 28438207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum.
    Liu K; Gao Y; Li ZH; Liu M; Wang FQ; Wei DZ
    N Biotechnol; 2022 Jan; 66():61-69. PubMed ID: 34653700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli.
    Reisch CR; Prather KL
    Sci Rep; 2015 Oct; 5():15096. PubMed ID: 26463009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmid-based complementation of large deletions in Phaeodactylum tricornutum biosynthetic genes generated by Cas9 editing.
    Slattery SS; Wang H; Giguere DJ; Kocsis C; Urquhart BL; Karas BJ; Edgell DR
    Sci Rep; 2020 Aug; 10(1):13879. PubMed ID: 32807825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boosting targeted genome editing using the hei-tag.
    Thumberger T; Tavhelidse-Suck T; Gutierrez-Triana JA; Cornean A; Medert R; Welz B; Freichel M; Wittbrodt J
    Elife; 2022 Mar; 11():. PubMed ID: 35333175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.
    Pyne ME; Bruder MR; Moo-Young M; Chung DA; Chou CP
    Sci Rep; 2016 May; 6():25666. PubMed ID: 27157668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System.
    Wolf T; Gren T; Thieme E; Wibberg D; Zemke T; Pühler A; Kalinowski J
    J Biotechnol; 2016 Aug; 231():122-128. PubMed ID: 27262504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-Yeast Engineering of a Bacterial Genome Using CRISPR/Cas9.
    Tsarmpopoulos I; Gourgues G; Blanchard A; Vashee S; Jores J; Lartigue C; Sirand-Pugnet P
    ACS Synth Biol; 2016 Jan; 5(1):104-9. PubMed ID: 26592087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas-Mediated Genome Editing of Streptomyces.
    Tan LL; Heng E; Zulkarnain N; Hsiao WC; Wong FT; Zhang MM
    Methods Mol Biol; 2022; 2479():207-225. PubMed ID: 35583741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Broad Host Range Plasmid-Based Roadmap for ssDNA-Based Recombineering in Gram-Negative Bacteria.
    Aparicio T; de Lorenzo V; Martínez-García E
    Methods Mol Biol; 2020; 2075():383-398. PubMed ID: 31584177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted mutagenesis of Mycoplasma gallisepticum using its endogenous CRISPR/Cas system.
    Mahdizadeh S; Sansom FM; Lee SW; Browning GF; Marenda MS
    Vet Microbiol; 2020 Nov; 250():108868. PubMed ID: 33039728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.