These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36215083)

  • 1. Handcrafted versus non-handcrafted (self-supervised) features for the classification of antimicrobial peptides: complementary or redundant?
    García-Jacas CR; García-González LA; Martinez-Rios F; Tapia-Contreras IP; Brizuela CA
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36215083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do deep learning models make a difference in the identification of antimicrobial peptides?
    García-Jacas CR; Pinacho-Castellanos SA; García-González LA; Brizuela CA
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal selection of molecular descriptors for antimicrobial peptides classification: an evolutionary feature weighting approach.
    Beltran JA; Aguilera-Mendoza L; Brizuela CA
    BMC Genomics; 2018 Sep; 19(Suppl 7):672. PubMed ID: 30255784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against
    Yan J; Zhang B; Zhou M; Campbell-Valois FX; Siu SWI
    mSystems; 2023 Aug; 8(4):e0034523. PubMed ID: 37431995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuse feeds as one: cross-modal framework for general identification of AMPs.
    Zhang W; Xu Y; Wang A; Chen G; Zhao J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PTPAMP: prediction tool for plant-derived antimicrobial peptides.
    Jaiswal M; Singh A; Kumar S
    Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current synthetic chemistry towards cyclic antimicrobial peptides.
    He T; Qu R; Zhang J
    J Pept Sci; 2022 Jun; 28(6):e3387. PubMed ID: 34931393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures.
    Parchebafi A; Tamanaee F; Ehteram H; Ahmad E; Nikzad H; Haddad Kashani H
    Microb Cell Fact; 2022 Jun; 21(1):118. PubMed ID: 35717207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent insights into structure-function relationships of antimicrobial peptides.
    Ahmed TAE; Hammami R
    J Food Biochem; 2019 Jan; 43(1):e12546. PubMed ID: 31353490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expanding scope of antimicrobial peptide structures and their modes of action.
    Nguyen LT; Haney EF; Vogel HJ
    Trends Biotechnol; 2011 Sep; 29(9):464-72. PubMed ID: 21680034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
    Erdem Büyükkiraz M; Kesmen Z
    J Appl Microbiol; 2022 Mar; 132(3):1573-1596. PubMed ID: 34606679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality.
    Shagaghi N; Palombo EA; Clayton AHA; Bhave M
    World J Microbiol Biotechnol; 2018 Apr; 34(4):62. PubMed ID: 29651655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for building quantitative structure-activity relationship (QSAR) descriptors and predictive models for computer-aided design of antimicrobial peptides.
    Taboureau O
    Methods Mol Biol; 2010; 618():77-86. PubMed ID: 20094859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides.
    Juretić D; Vukičević D; Petrov D; Novković M; Bojović V; Lučić B; Ilić N; Tossi A
    Eur Biophys J; 2011 Apr; 40(4):371-85. PubMed ID: 21274708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides.
    Wang CK; Shih LY; Chang KY
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-helical cationic antimicrobial peptides: relationships of structure and function.
    Huang Y; Huang J; Chen Y
    Protein Cell; 2010 Feb; 1(2):143-52. PubMed ID: 21203984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.