These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36215128)

  • 1. Fine-Tuning the Electrocatalytic Regeneration of NADH Cofactor Using [Rh(Cp*)(bpy)Cl]
    Li W; Zhang C; Zheng Z; Zhang X; Zhang L; Kuhn A
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46673-46681. PubMed ID: 36215128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulk Electrocatalytic NADH Cofactor Regeneration with Bipolar Electrochemistry.
    Zhang C; Zhang H; Pi J; Zhang L; Kuhn A
    Angew Chem Int Ed Engl; 2022 Jan; 61(3):e202111804. PubMed ID: 34705321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the electrochemical regeneration of NADH by (2,2'-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes: impact on their immobilization onto electrode surfaces.
    Walcarius A; Nasraoui R; Wang Z; Qu F; Urbanova V; Etienne M; Göllü M; Demir AS; Gajdzik J; Hempelmann R
    Bioelectrochemistry; 2011 Aug; 82(1):46-54. PubMed ID: 21700510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Nicotinamide Adenine Dinucleotide Regeneration with a Rhodium-Carbene Catalyst and Isolation of a Hydride Intermediate.
    Ganesan V; Kim JJ; Shin J; Park K; Yoon S
    Inorg Chem; 2022 Apr; 61(15):5683-5690. PubMed ID: 35389623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ regeneration of NADH via lipoamide dehydrogenase-catalyzed electron transfer reaction evidenced by spectroelectrochemistry.
    Tam TK; Chen B; Lei C; Liu J
    Bioelectrochemistry; 2012 Aug; 86():92-6. PubMed ID: 22497727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of electrode potential, pH and NAD
    Aamer E; Thöming J; Baune M; Reimer N; Dringen R; Romero M; Bösing I
    Sci Rep; 2022 Sep; 12(1):16380. PubMed ID: 36180530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Photocatalytic Efficiency in Visible-Light-Induced NADH Regeneration by Intramolecular Electron Transfer.
    Wu X; Wang S; Fang J; Chen H; Liu H; Li R
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38895-38904. PubMed ID: 35986690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of Formate Dehydrogenase in a Metal-Organic Framework for Bioelectrocatalytic Reduction of CO
    Chen Y; Li P; Noh H; Kung CW; Buru CT; Wang X; Zhang X; Farha OK
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7682-7686. PubMed ID: 30913356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems.
    Raitman OA; Katz E; Bückmann AF; Willner I
    J Am Chem Soc; 2002 Jun; 124(22):6487-96. PubMed ID: 12033880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-Guided Design of Formate Dehydrogenase for Regeneration of a Non-Natural Redox Cofactor.
    Guo X; Wang X; Liu Y; Li Q; Wang J; Liu W; Zhao ZK
    Chemistry; 2020 Dec; 26(70):16611-16615. PubMed ID: 32815230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between the Structure and Catalytic Activity of [Cp*Rh(Substituted Bipyridine)] Complexes for NADH Regeneration.
    Ganesan V; Sivanesan D; Yoon S
    Inorg Chem; 2017 Feb; 56(3):1366-1374. PubMed ID: 28072529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensifying Electron Utilization by Surface-Anchored Rh Complex for Enhanced Nicotinamide Cofactor Regeneration and Photoenzymatic CO
    Cheng Y; Shi J; Wu Y; Wang X; Sun Y; Cai Z; Chen Y; Jiang Z
    Research (Wash D C); 2021; 2021():8175709. PubMed ID: 33693433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical behavior of a Rh(pentamethylcyclopentadienyl) complex bearing an NAD
    Kobayashi K; Koizumi TA; Ghosh D; Kajiwara T; Kitagawa S; Tanaka K
    Dalton Trans; 2018 Apr; 47(15):5207-5216. PubMed ID: 29537007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH).
    Immanuel S; Sivasubramanian R; Gul R; Dar MA
    Chem Asian J; 2020 Dec; 15(24):4256-4270. PubMed ID: 33164351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodium-Based MOF-on-MOF Difunctional Core-Shell Nanoreactor for NAD(P)H Regeneration and Enzyme Directed Immobilization.
    Zhang Y; Wei B; Liang H
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3442-3454. PubMed ID: 36609187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.
    Soldevila-Barreda JJ; Habtemariam A; Romero-Canelón I; Sadler PJ
    J Inorg Biochem; 2015 Dec; 153():322-333. PubMed ID: 26601938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Metalation of the Metal-Organic Framework MIL-125-NH
    Lin G; Zhang Y; Hua Y; Zhang C; Jia C; Ju D; Yu C; Li P; Liu J
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202206283. PubMed ID: 35585038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New approach to biosensing of co-enzyme nicotinamide adenine dinucleotide (NADH) by incorporation of neutral red in aluminum doped nanostructured ZnO thin films.
    V T F; T S C
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1559-1565. PubMed ID: 28062235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent Immobilization of Dehydrogenases on Carbon Felt for Reusable Anodes with Effective Electrochemical Cofactor Regeneration.
    Pietricola G; Chamorro L; Castellino M; Maureira D; Tommasi T; Hernández S; Wilson L; Fino D; Ottone C
    ChemistryOpen; 2022 Nov; 11(11):e202200102. PubMed ID: 35856864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.