These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36215333)

  • 21. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A; Lu XJ; Zakrzewska A; Klis FM; Bussemaker HJ
    PLoS One; 2008 Sep; 3(9):e3112. PubMed ID: 18769540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p.
    Moxley JF; Jewett MC; Antoniewicz MR; Villas-Boas SG; Alper H; Wheeler RT; Tong L; Hinnebusch AG; Ideker T; Nielsen J; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6477-82. PubMed ID: 19346491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated module and gene-specific regulatory inference implicates upstream signaling networks.
    Roy S; Lagree S; Hou Z; Thomson JA; Stewart R; Gasch AP
    PLoS Comput Biol; 2013; 9(10):e1003252. PubMed ID: 24146602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Windowed Granger causal inference strategy improves discovery of gene regulatory networks.
    Finkle JD; Wu JJ; Bagheri N
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2252-2257. PubMed ID: 29440433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants.
    Varala K; Marshall-Colón A; Cirrone J; Brooks MD; Pasquino AV; Léran S; Mittal S; Rock TM; Edwards MB; Kim GJ; Ruffel S; McCombie WR; Shasha D; Coruzzi GM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6494-6499. PubMed ID: 29769331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of the cell-cycle network under genome-rewiring perturbations.
    Katzir Y; Elhanati Y; Averbukh I; Braun E
    Phys Biol; 2013 Dec; 10(6):066001. PubMed ID: 24162518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle.
    Ferrezuelo F; Colomina N; Futcher B; Aldea M
    Genome Biol; 2010; 11(6):R67. PubMed ID: 20573214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comprehensive genetic analysis of transcription factor pathways using a dual reporter gene system in budding yeast.
    Kainth P; Sassi HE; Peña-Castillo L; Chua G; Hughes TR; Andrews B
    Methods; 2009 Jul; 48(3):258-64. PubMed ID: 19269327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linking the signaling cascades and dynamic regulatory networks controlling stress responses.
    Gitter A; Carmi M; Barkai N; Bar-Joseph Z
    Genome Res; 2013 Feb; 23(2):365-76. PubMed ID: 23064748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.
    Prasad V; Venkatesh KV
    BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust Synthetic Circuits for Two-Dimensional Control of Gene Expression in Yeast.
    Aranda-Díaz A; Mace K; Zuleta I; Harrigan P; El-Samad H
    ACS Synth Biol; 2017 Mar; 6(3):545-554. PubMed ID: 27930885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence.
    Dwight Kuo P; Banzhaf W; Leier A
    Biosystems; 2006 Sep; 85(3):177-200. PubMed ID: 16650928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconciling conflicting models for global control of cell-cycle transcription.
    Cho CY; Motta FC; Kelliher CM; Deckard A; Haase SB
    Cell Cycle; 2017 Oct; 16(20):1965-1978. PubMed ID: 28934013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epistatic relationships reveal the functional organization of yeast transcription factors.
    Zheng J; Benschop JJ; Shales M; Kemmeren P; Greenblatt J; Cagney G; Holstege F; Li H; Krogan NJ
    Mol Syst Biol; 2010 Oct; 6():420. PubMed ID: 20959818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A network biology approach to aging in yeast.
    Lorenz DR; Cantor CR; Collins JJ
    Proc Natl Acad Sci U S A; 2009 Jan; 106(4):1145-50. PubMed ID: 19164565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional networks: reverse-engineering gene regulation on a global scale.
    Chua G; Robinson MD; Morris Q; Hughes TR
    Curr Opin Microbiol; 2004 Dec; 7(6):638-46. PubMed ID: 15556037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies.
    Bashor CJ; Patel N; Choubey S; Beyzavi A; Kondev J; Collins JJ; Khalil AS
    Science; 2019 May; 364(6440):593-597. PubMed ID: 31000590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A predictive model of the oxygen and heme regulatory network in yeast.
    Kundaje A; Xin X; Lan C; Lianoglou S; Zhou M; Zhang L; Leslie C
    PLoS Comput Biol; 2008 Nov; 4(11):e1000224. PubMed ID: 19008939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.