These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36215597)

  • 1. Monte Carlo-transformed field expansion method for simulating electromagnetic wave scattering by multilayered random media.
    Ulmer K; Lin J; Nicholls DP
    J Opt Soc Am A Opt Image Sci Vis; 2022 Aug; 39(8):1513-1523. PubMed ID: 36215597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations.
    Nicholls DP
    Proc Math Phys Eng Sci; 2018 Apr; 474(2212):20170704. PubMed ID: 29740256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A field expansions method for scattering by periodic multilayered media.
    Malcolm A; Nicholls DP
    J Acoust Soc Am; 2011 Apr; 129(4):1783-93. PubMed ID: 21476635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling ultrasonic wave fields using a Quasi-Monte Carlo method: Wave transmission through complicated interfaces.
    Zhang S; Cheng C; Li X; Huang Y; Jeong H
    J Acoust Soc Am; 2022 Aug; 152(2):994. PubMed ID: 36050183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method.
    Norris ET; Liu X; Hsieh J
    Med Phys; 2015 Jul; 42(7):4080-7. PubMed ID: 26133608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method of field expansions for vector electromagnetic scattering by layered periodic crossed gratings.
    Nicholls DP
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):701-9. PubMed ID: 26366892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification method of Monte Carlo codes for transport processes with arbitrary accuracy.
    Martelli F; Tommasi F; Sassaroli A; Fini L; Cavalieri S
    Sci Rep; 2021 Sep; 11(1):19486. PubMed ID: 34593837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scattering and absorption in dense discrete random media of irregular particles.
    Markkanen J; Väisänen T; Penttilä A; Muinonen K
    Opt Lett; 2018 Jun; 43(12):2925-2928. PubMed ID: 29905725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A concise and efficient scattering matrix formalism for stable analysis of elastic wave propagation in multilayered anisotropic solids.
    Tan EL
    Ultrasonics; 2003 May; 41(3):229-36. PubMed ID: 12726945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media.
    Crevillén-García D; Power H
    R Soc Open Sci; 2017 Aug; 4(8):170203. PubMed ID: 28878974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical studies of backscattering enhancement of electromagnetic waves from two-dimensional random rough surfaces with the forward-backward/novel spectral acceleration method.
    Torrungrueng D; Johnson JT
    J Opt Soc Am A Opt Image Sci Vis; 2001 Oct; 18(10):2518-26. PubMed ID: 11583269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromagnetic wave scattering from a rough interface above a chiral medium: generalized field transforms.
    Crittenden PE; Bahar E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):325-34. PubMed ID: 23456108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory.
    Garniron Y; Scemama A; Loos PF; Caffarel M
    J Chem Phys; 2017 Jul; 147(3):034101. PubMed ID: 28734281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms.
    Bouchard H; Bielajew A
    Phys Med Biol; 2015 Jul; 60(13):4963-71. PubMed ID: 26061045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments.
    Sainath K; Teixeira FL; Donderici B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013312. PubMed ID: 24580365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Monte Carlo efficiency by Monte Carlo analysis.
    Rubenstein BM; Gubernatis JE; Doll JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic scattering by discrete random media. II: The coherent field.
    Doicu A; Mishchenko MI
    J Quant Spectrosc Radiat Transf; 2019 Jun; 230():86-105. PubMed ID: 31186585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbation Monte Carlo Method for Quantitative Photoacoustic Tomography.
    Leino AA; Lunttila T; Mozumder M; Pulkkinen A; Tarvainen T
    IEEE Trans Med Imaging; 2020 Oct; 39(10):2985-2995. PubMed ID: 32217473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence.
    Radosevich AJ; Rogers JD; Capoğlu IR; Mutyal NN; Pradhan P; Backman V
    J Biomed Opt; 2012 Nov; 17(11):115001. PubMed ID: 23123973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.