These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36215628)

  • 1. Alternative computation of the Seidel aberration coefficients using the Lie algebraic method.
    Barion A; Anthonissen MJH; Ten Thije Boonkkamp JHM; IJzerman WL
    J Opt Soc Am A Opt Image Sci Vis; 2022 Sep; 39(9):1603-1615. PubMed ID: 36215628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing aberration coefficients for plane-symmetric reflective systems: a Lie algebraic approach.
    Barion A; Anthonissen MJH; Ten Thije Boonkkamp JHM; IJzerman WL
    J Opt Soc Am A Opt Image Sci Vis; 2023 Jun; 40(6):1215-1224. PubMed ID: 37706775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seidel aberration coefficients: an alternative computational method.
    Lin PD; Johnson RB
    Opt Express; 2019 Jul; 27(14):19712-19725. PubMed ID: 31503727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seidel primary ray aberration coefficients for objects placed at finite and infinite distances.
    Lin PD
    Opt Express; 2020 Apr; 28(9):12740-12754. PubMed ID: 32403765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Seidel aberration by use of the discrete wavelet transform.
    Chang RS; Sheu JY; Lin CH
    Appl Opt; 2002 May; 41(13):2408-13. PubMed ID: 12009149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental ray aberration analysis: extension of ray matrix analysis to the third-order region using a four-element fundamental ray vector.
    Mori K; Hayasaki Y; Araki K
    Appl Opt; 2020 May; 59(14):4466-4477. PubMed ID: 32400427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized chromatic aberrations in non-rotationally symmetric optical systems-Part I: mathematical approach.
    Cai D; Gross H
    Appl Opt; 2021 Jul; 60(21):6313-6321. PubMed ID: 34613299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrations of anamorphic optical systems. II. Primary aberration theory for cylindrical anamorphic systems.
    Yuan S; Sasian J
    Appl Opt; 2009 May; 48(15):2836-41. PubMed ID: 19458731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method of zoom lens design.
    Miks A; Novák J; Novák P
    Appl Opt; 2008 Nov; 47(32):6088-98. PubMed ID: 19002234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General method for replacing a thin lens with a thick lens with the same value of Seidel aberration coefficient of spherical aberration or coma.
    Mikš A; Novák P
    J Opt Soc Am A Opt Image Sci Vis; 2021 Sep; 38(9):1372-1379. PubMed ID: 34613145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrations of anamorphic optical systems III: the primary aberration theory for toroidal anamorphic systems.
    Yuan S; Sasian J
    Appl Opt; 2010 Dec; 49(35):6802-7. PubMed ID: 21151238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of Zernike aberration coefficients to Seidel and higher-order power-series aberration coefficients.
    Tyson RK
    Opt Lett; 1982 Jun; 7(6):262-4. PubMed ID: 19710893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stigmatic optical system with corrected third-order spherical aberration for an arbitrary position of the object.
    Mikš A; Novák P
    J Opt Soc Am A Opt Image Sci Vis; 2022 Oct; 39(10):1849-1856. PubMed ID: 36215557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential algebraic method for aberration analysis of typical electrostatic lenses.
    Liu Z
    Ultramicroscopy; 2006 Feb; 106(3):220-32. PubMed ID: 16125845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacing a thin lens by a thick lens.
    Mikš A; Novák P
    Appl Opt; 2020 Jul; 59(21):6327-6332. PubMed ID: 32749296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberration fields of a combination of plane symmetric systems.
    Moore LB; Hvisc AM; Sasian J
    Opt Express; 2008 Sep; 16(20):15655-70. PubMed ID: 18825204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algebraic approach to characterizing paraxial optical systems.
    Wittig K; Giesen A; Hügel H
    Appl Opt; 1994 Jun; 33(18):3837-48. PubMed ID: 20935724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image field distribution model of wavefront aberration and models of distortion and field curvature.
    Matsuzawa T
    J Opt Soc Am A Opt Image Sci Vis; 2011 Feb; 28(2):96-110. PubMed ID: 21293515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zernike aberration coefficients from Seidel and higher-order power-series coefficients.
    Conforti G
    Opt Lett; 1983 Jul; 8(7):407-8. PubMed ID: 19718130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fifth-order field aberration coefficients for an optical surface of rotational symmetry.
    Gaj M
    Appl Opt; 1971 Jul; 10(7):1642-7. PubMed ID: 20111179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.