These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 36215717)
1. Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling. Liu R; Zhou Z; Mo X; Liu P; Hu B; Duan J; Zhou J ACS Appl Mater Interfaces; 2022 Oct; 14(41):46972-46979. PubMed ID: 36215717 [TBL] [Abstract][Full Text] [Related]
2. Diatomite-Based Recyclable and Green Coating for Efficient Radiative Cooling. Lu J; Fan Y; Lou X; Xie W; Zhao B; Zhou H; Fan T Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248624 [TBL] [Abstract][Full Text] [Related]
3. Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling. Xue X; Qiu M; Li Y; Zhang QM; Li S; Yang Z; Feng C; Zhang W; Dai JG; Lei D; Jin W; Xu L; Zhang T; Qin J; Wang H; Fan S Adv Mater; 2020 Oct; 32(42):e1906751. PubMed ID: 32924184 [TBL] [Abstract][Full Text] [Related]
4. Efficient Passive Daytime Radiative Cooling by Hierarchically Designed Films Integrating Robust Durability. Zhang L; Zhan H; Xia Y; Zhang R; Xue J; Yong J; Zhao L; Liu Y; Feng S ACS Appl Mater Interfaces; 2023 Jul; 15(26):31994-32001. PubMed ID: 37347225 [TBL] [Abstract][Full Text] [Related]
5. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188 [TBL] [Abstract][Full Text] [Related]
6. Ultrawhite BaSO Li X; Peoples J; Yao P; Ruan X ACS Appl Mater Interfaces; 2021 May; 13(18):21733-21739. PubMed ID: 33856776 [TBL] [Abstract][Full Text] [Related]
7. Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling. Jing W; Zhang S; Zhang W; Chen Z; Zhang C; Wu D; Gao Y; Zhu H ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34132091 [TBL] [Abstract][Full Text] [Related]
8. Structural Porous Ceramic for Efficient Daytime Subambient Radiative Cooling. Zhao J; Meng Q; Li Y; Yang Z; Li J ACS Appl Mater Interfaces; 2023 Oct; 15(40):47286-47293. PubMed ID: 37751606 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling. Zhou K; Li W; Patel BB; Tao R; Chang Y; Fan S; Diao Y; Cai L Nano Lett; 2021 Feb; 21(3):1493-1499. PubMed ID: 33464912 [TBL] [Abstract][Full Text] [Related]
10. Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling. Tian Y; Shao H; Liu X; Chen F; Li Y; Tang C; Zheng Y ACS Appl Mater Interfaces; 2021 May; 13(19):22521-22530. PubMed ID: 33950669 [TBL] [Abstract][Full Text] [Related]
11. Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings. Zhong H; Li Y; Zhang P; Gao S; Liu B; Wang Y; Meng T; Zhou Y; Hou H; Xue C; Zhao Y; Wang Z ACS Nano; 2021 Jun; 15(6):10076-10083. PubMed ID: 34014070 [TBL] [Abstract][Full Text] [Related]
12. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Mandal J; Fu Y; Overvig AC; Jia M; Sun K; Shi NN; Zhou H; Xiao X; Yu N; Yang Y Science; 2018 Oct; 362(6412):315-319. PubMed ID: 30262632 [TBL] [Abstract][Full Text] [Related]
13. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling. Liu S; Sui C; Harbinson M; Pudlo M; Perera H; Zhang Z; Liu R; Ku Z; Islam MD; Liu Y; Wu R; Zhu Y; Genzer J; Khan SA; Hsu PC; Ryu JE Nano Lett; 2023 Sep; 23(17):7767-7774. PubMed ID: 37487140 [TBL] [Abstract][Full Text] [Related]
14. A structural polymer for highly efficient all-day passive radiative cooling. Wang T; Wu Y; Shi L; Hu X; Chen M; Wu L Nat Commun; 2021 Jan; 12(1):365. PubMed ID: 33446648 [TBL] [Abstract][Full Text] [Related]
15. Bioinspired Switchable Passive Daytime Radiative Cooling Coatings. Wang T; Xiao Y; King JL; Kats MA; Stebe KJ; Lee D ACS Appl Mater Interfaces; 2023 Oct; 15(41):48716-48724. PubMed ID: 37812501 [TBL] [Abstract][Full Text] [Related]
16. Anisotropic porous designed polymer coatings for high-performance passive all-day radiative cooling. Zhu J; An Z; Zhang A; Du Y; Zhou X; Geng Y; Chen G iScience; 2022 Apr; 25(4):104126. PubMed ID: 35402873 [TBL] [Abstract][Full Text] [Related]
17. Performance of a superamphiphobic self-cleaning passive subambient daytime radiative cooling coating on grain and oil storage structures. Cai Y; Zhang Z; Yang Z; Fang Z; Chen S; Zhang X; Li W; Zhang Y; Zhang H; Sun Z; Zhang Y; Li Y; Liu L; Zhang W; Xue X Heliyon; 2023 Apr; 9(4):e14599. PubMed ID: 37089341 [TBL] [Abstract][Full Text] [Related]
18. Designing Nanoporous Polymer Films for High-Performance Passive Daytime Radiative Cooling. Huang L; Hu Y; Yao X; Chesman ASR; Wang H; Sagoe-Crentsil K; Duan W ACS Appl Mater Interfaces; 2024 Oct; 16(40):54401-54411. PubMed ID: 39239925 [TBL] [Abstract][Full Text] [Related]
19. Particle-Solid Transition Architecture for Efficient Passive Building Cooling. Yan X; Yang M; Duan W; Cui H ACS Nano; 2024 Oct; 18(40):27752-27763. PubMed ID: 39321467 [TBL] [Abstract][Full Text] [Related]
20. Development of Microparticle Implanted PVDF-HF Polymer Coating on Building Material for Daytime Radiative Cooling. Saeed U; Altamimi MMS; Al-Turaif H Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]