BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36216458)

  • 1. Prevention of Oxidative Damage in Spinal Cord Ischemia Upon Aortic Surgery: First-In-Human Results of Shock Wave Therapy Prove Safety and Feasibility.
    Graber M; Nägele F; Röhrs BT; Hirsch J; Pölzl L; Moriggl B; Mayr A; Troger F; Kirchmair E; Wagner JF; Nowosielski M; Mayer L; Voelkl J; Tancevski I; Meyer D; Grimm M; Knoflach M; Holfeld J; Gollmann-Tepeköylü C
    J Am Heart Assoc; 2022 Oct; 11(20):e026076. PubMed ID: 36216458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shock waves promote spinal cord repair via TLR3.
    Gollmann-Tepeköylü C; Nägele F; Graber M; Pölzl L; Lobenwein D; Hirsch J; An A; Irschick R; Röhrs B; Kremser C; Hackl H; Huber R; Venezia S; Hercher D; Fritsch H; Bonaros N; Stefanova N; Tancevski I; Meyer D; Grimm M; Holfeld J
    JCI Insight; 2020 Aug; 5(15):. PubMed ID: 32759498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shock Wave Treatment Protects From Neuronal Degeneration via a Toll-Like Receptor 3 Dependent Mechanism: Implications of a First-Ever Causal Treatment for Ischemic Spinal Cord Injury.
    Lobenwein D; Tepeköylü C; Kozaryn R; Pechriggl EJ; Bitsche M; Graber M; Fritsch H; Semsroth S; Stefanova N; Paulus P; Czerny M; Grimm M; Holfeld J
    J Am Heart Assoc; 2015 Oct; 4(10):e002440. PubMed ID: 26508745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal Pre- and Postconditioning via Toll-like Receptor 3 Agonist or Extracorporeal Shock Wave Therapy as New Treatment Strategies for Spinal Cord Ischemia: An In Vitro Study.
    Lobenwein D; Huber R; Kerbler L; Gratl A; Wipper S; Gollmann-Tepeköylü C; Holfeld J
    J Clin Med; 2022 Apr; 11(8):. PubMed ID: 35456206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Astrocytic Nrf2 expression protects spinal cord from oxidative stress following spinal cord injury in a male mouse model.
    Zhao W; Gasterich N; Clarner T; Voelz C; Behrens V; Beyer C; Fragoulis A; Zendedel A
    J Neuroinflammation; 2022 Jun; 19(1):134. PubMed ID: 35668451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothrombosis-induced Focal Ischemia as a Model of Spinal Cord Injury in Mice.
    Li H; Roy Choudhury G; Zhang N; Ding S
    J Vis Exp; 2015 Jul; (101):e53161. PubMed ID: 26274772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic review of spinal cord ischemia prevention and management after open and endovascular aortic repair.
    Lella SK; Waller HD; Pendleton A; Latz CA; Boitano LT; Dua A
    J Vasc Surg; 2022 Mar; 75(3):1091-1106. PubMed ID: 34740806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock Wave Therapy Improves Cardiac Function in a Model of Chronic Ischemic Heart Failure: Evidence for a Mechanism Involving VEGF Signaling and the Extracellular Matrix.
    Gollmann-Tepeköylü C; Lobenwein D; Theurl M; Primessnig U; Lener D; Kirchmair E; Mathes W; Graber M; Pölzl L; An A; Koziel K; Pechriggl E; Voelkl J; Paulus P; Schaden W; Grimm M; Kirchmair R; Holfeld J
    J Am Heart Assoc; 2018 Oct; 7(20):e010025. PubMed ID: 30371289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cilostazol on oxidative stress, systemic cytokine release, and spinal cord injury in a rat model of transient aortic occlusion.
    Kurtoglu T; Basoglu H; Ozkisacik EA; Cetin NK; Tataroglu C; Yenisey C; Discigil B
    Ann Vasc Surg; 2014 Feb; 28(2):479-88. PubMed ID: 24485778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210.
    Qiu Q; Shen T; Wang Q; Yu X; Jia N; He Q
    Mol Med Rep; 2020 Feb; 21(2):631-640. PubMed ID: 31974607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of extracorporeal shock wave therapy in acute traumatic spinal cord injury on motor and sensory function within 6 months post-injury: a study protocol for a two-arm three-stage adaptive, prospective, multi-center, randomized, blinded, placebo-controlled clinical trial.
    Leister I; Mittermayr R; Mattiassich G; Aigner L; Haider T; Machegger L; Kindermann H; Grazer-Horacek A; Holfeld J; Schaden W
    Trials; 2022 Apr; 23(1):245. PubMed ID: 35365190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraoperative neuroprotective interventions prevent spinal cord ischemia and injury in thoracic endovascular aortic repair.
    Acher C; Acher CW; Marks E; Wynn M
    J Vasc Surg; 2016 Jun; 63(6):1458-65. PubMed ID: 26968081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle.
    Holfeld J; Tepeköylü C; Reissig C; Lobenwein D; Scheller B; Kirchmair E; Kozaryn R; Albrecht-Schgoer K; Krapf C; Zins K; Urbschat A; Zacharowski K; Grimm M; Kirchmair R; Paulus P
    Cardiovasc Res; 2016 Feb; 109(2):331-43. PubMed ID: 26676850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells.
    Li D; Tian H; Li X; Mao L; Zhao X; Lin J; Lin S; Xu C; Liu Y; Guo Y; Mei X
    Life Sci; 2020 Mar; 245():117351. PubMed ID: 31981629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhalation of Hydrogen of Different Concentrations Ameliorates Spinal Cord Injury in Mice by Protecting Spinal Cord Neurons from Apoptosis, Oxidative Injury and Mitochondrial Structure Damages.
    Chen X; Cui J; Zhai X; Zhang J; Gu Z; Zhi X; Weng W; Pan P; Cao L; Ji F; Wang Z; Su J
    Cell Physiol Biochem; 2018; 47(1):176-190. PubMed ID: 29763919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intravenous infusion of auto serum-expanded autologous mesenchymal stem cells in spinal cord injury patients: 13 case series.
    Honmou O; Yamashita T; Morita T; Oshigiri T; Hirota R; Iyama S; Kato J; Sasaki Y; Ishiai S; Ito YM; Namioka A; Namioka T; Nakazaki M; Kataoka-Sasaki Y; Onodera R; Oka S; Sasaki M; Waxman SG; Kocsis JD
    Clin Neurol Neurosurg; 2021 Apr; 203():106565. PubMed ID: 33667953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-Cyperone Improves Rat Spinal Cord Tissue Damage via Akt/Nrf2 and NF-κB Pathways.
    Deng M; Xie P; Liu J; Zhou Y; Chen Z; Ma Y; Yang J
    J Surg Res; 2022 Aug; 276():331-339. PubMed ID: 35427911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal Cord Injury-Assessing Tolerability and Use of Combined Rehabilitation and NeuroAiD (SATURN Study): Protocol of An Exploratory Study In Assessing the Safety and Efficacy of NeuroAiD Amongst People Who Sustain Severe Spinal Cord Injury.
    Kumar R; Htwe O; Baharudin A; Ariffin MH; Abdul Rhani S; Ibrahim K; Rustam A; Gan R
    JMIR Res Protoc; 2016 Dec; 5(4):e230. PubMed ID: 27919862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.