These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36216710)

  • 1. Improving editing efficiency of prime editor in plants.
    Ahmad N; Awan MJA; Mansoor S
    Trends Plant Sci; 2023 Jan; 28(1):1-3. PubMed ID: 36216710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twin prime editor: seamless repair without damage.
    Awan MJA; Ali Z; Amin I; Mansoor S
    Trends Biotechnol; 2022 Apr; 40(4):374-376. PubMed ID: 35153078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of the T5 exonuclease increases the prime editing efficiency in plants.
    Liang Z; Wu Y; Guo Y; Wei S
    J Genet Genomics; 2023 Aug; 50(8):582-588. PubMed ID: 36958601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Prime editing creates a novel dimension of plant precise genome editing].
    Qin RY; Wei PC
    Yi Chuan; 2020 Jun; 42(6):519-523. PubMed ID: 32694110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A design optimized prime editor with expanded scope and capability in plants.
    Xu W; Yang Y; Yang B; Krueger CJ; Xiao Q; Zhao S; Zhang L; Kang G; Wang F; Yi H; Ren W; Li L; He X; Zhang C; Zhang B; Zhao J; Yang J
    Nat Plants; 2022 Jan; 8(1):45-52. PubMed ID: 34949802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PASTE: a high-throughput method for large DNA insertions.
    Awan MJA; Mahmood MA; Naqvi RZ; Mansoor S
    Trends Plant Sci; 2023 May; 28(5):509-511. PubMed ID: 36898908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Editing the Genome Without Double-Stranded DNA Breaks.
    Komor AC; Badran AH; Liu DR
    ACS Chem Biol; 2018 Feb; 13(2):383-388. PubMed ID: 28957631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prime editing: Its systematic optimization and current applications in disease treatment and agricultural breeding.
    Yu X; Huo G; Yu J; Li H; Li J
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127025. PubMed ID: 37769783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Plant prime editing technique: a new genome editing tool for plants].
    DU Q; Wang C; Liu G; Zhang D; Zhang S; Qiu J
    Sheng Wu Gong Cheng Xue Bao; 2022 Jan; 38(1):26-33. PubMed ID: 35142116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining.
    Van Vu T; Thi Hai Doan D; Kim J; Sung YW; Thi Tran M; Song YJ; Das S; Kim JY
    Plant Biotechnol J; 2021 Feb; 19(2):230-239. PubMed ID: 33047464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An engineered prime editor with enhanced editing efficiency in plants.
    Zong Y; Liu Y; Xue C; Li B; Li X; Wang Y; Li J; Liu G; Huang X; Cao X; Gao C
    Nat Biotechnol; 2022 Sep; 40(9):1394-1402. PubMed ID: 35332341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells.
    Tao R; Wang Y; Jiao Y; Hu Y; Li L; Jiang L; Zhou L; Qu J; Chen Q; Yao S
    Nucleic Acids Res; 2022 Jun; 50(11):6423-6434. PubMed ID: 35687127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing.
    Peterka M; Akrap N; Li S; Wimberger S; Hsieh PP; Degtev D; Bestas B; Barr J; van de Plassche S; Mendoza-Garcia P; Šviković S; Sienski G; Firth M; Maresca M
    Nat Commun; 2022 Mar; 13(1):1240. PubMed ID: 35332138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects.
    Hillary VE; Ceasar SA
    Bioessays; 2022 Sep; 44(9):e2200032. PubMed ID: 35750651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR.
    Shamshirgaran Y; Liu J; Sumer H; Verma PJ; Taheri-Ghahfarokhi A
    Methods Mol Biol; 2022; 2495():29-46. PubMed ID: 35696026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prime Editing in Mammals: The Next Generation of Precision Genome Editing.
    Wang D; Fan X; Li M; Liu T; Lu P; Wang G; Li Y; Han J; Zhao J
    CRISPR J; 2022 Dec; 5(6):746-768. PubMed ID: 36512351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome editing reagent delivery in plants.
    Ghogare R; Ludwig Y; Bueno GM; Slamet-Loedin IH; Dhingra A
    Transgenic Res; 2021 Aug; 30(4):321-335. PubMed ID: 33728594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts.
    Sretenovic S; Pan C; Tang X; Zhang Y; Qi Y
    Methods Mol Biol; 2021; 2238():95-113. PubMed ID: 33471327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prime genome editing in rice and wheat.
    Lin Q; Zong Y; Xue C; Wang S; Jin S; Zhu Z; Wang Y; Anzalone AV; Raguram A; Doman JL; Liu DR; Gao C
    Nat Biotechnol; 2020 May; 38(5):582-585. PubMed ID: 32393904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.