These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36216956)
1. Cholesterol-stabilized membrane-active nanopores with anticancer activities. Shen J; Gu Y; Ke L; Zhang Q; Cao Y; Lin Y; Wu Z; Wu C; Mu Y; Wu YL; Ren C; Zeng H Nat Commun; 2022 Oct; 13(1):5985. PubMed ID: 36216956 [TBL] [Abstract][Full Text] [Related]
2. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Gong B; Shao Z Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055 [TBL] [Abstract][Full Text] [Related]
3. Concentration-Driven Evolution of Adaptive Artificial Ion Channels or Nanopores with Specific Anticancer Activities. Chen Z; Xie X; Jia C; Zhong Q; Zhang Q; Luo D; Cao Y; Mu Y; Ren C Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202318811. PubMed ID: 38419371 [TBL] [Abstract][Full Text] [Related]
4. Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity. Shen Q; Xiong Q; Zhou K; Feng Q; Liu L; Tian T; Wu C; Xiong Y; Melia TJ; Lusk CP; Lin C J Am Chem Soc; 2023 Jan; 145(2):1292-1300. PubMed ID: 36577119 [TBL] [Abstract][Full Text] [Related]
5. Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes. Sischka A; Galla L; Meyer AJ; Spiering A; Knust S; Mayer M; Hall AR; Beyer A; Reimann P; Gölzhäuser A; Anselmetti D Analyst; 2015 Jul; 140(14):4843-7. PubMed ID: 25768647 [TBL] [Abstract][Full Text] [Related]
6. Probing DNA-lipid membrane interactions with a lipopeptide nanopore. Bessonov A; Takemoto JY; Simmel FC ACS Nano; 2012 Apr; 6(4):3356-63. PubMed ID: 22424398 [TBL] [Abstract][Full Text] [Related]
7. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene. Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295 [TBL] [Abstract][Full Text] [Related]
8. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules. Yanagi I; Akahori R; Takeda KI Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597 [TBL] [Abstract][Full Text] [Related]
9. Tuning the Diameter, Stability, and Membrane Affinity of Peptide Pores by DNA-Programmed Self-Assembly. Fennouri A; List J; Ducrey J; Dupasquier J; Sukyte V; Mayer SF; Vargas RD; Pascual Fernandez L; Bertani F; Rodriguez Gonzalo S; Yang J; Mayer M ACS Nano; 2021 Jul; 15(7):11263-11275. PubMed ID: 34128638 [TBL] [Abstract][Full Text] [Related]
10. Biohybrid Membrane Formation by Directed Insertion of Aquaporin into a Solid-State Nanopore. Sicard F; Yazaydin AO ACS Appl Mater Interfaces; 2022 Oct; 14(42):48029-48036. PubMed ID: 36244033 [TBL] [Abstract][Full Text] [Related]
11. Oxidation of nanopores in a silicon membrane: self-limiting formation of sub-10 nm circular openings. Zhang M; Schmidt T; Sangghaleh F; Roxhed N; Sychugov I; Linnros J Nanotechnology; 2014 Sep; 25(35):355302. PubMed ID: 25116147 [TBL] [Abstract][Full Text] [Related]
12. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors. Cressiot B; Greive SJ; Mojtabavi M; Antson AA; Wanunu M Nat Commun; 2018 Nov; 9(1):4652. PubMed ID: 30405123 [TBL] [Abstract][Full Text] [Related]
13. Reconstitution of Ultrawide DNA Origami Pores in Liposomes for Transmembrane Transport of Macromolecules. Fragasso A; De Franceschi N; Stömmer P; van der Sluis EO; Dietz H; Dekker C ACS Nano; 2021 Aug; 15(8):12768-12779. PubMed ID: 34170119 [TBL] [Abstract][Full Text] [Related]
14. Principles of Small-Molecule Transport through Synthetic Nanopores. Diederichs T; Ahmad K; Burns JR; Nguyen QH; Siwy ZS; Tornow M; Coveney PV; Tampé R; Howorka S ACS Nano; 2021 Oct; 15(10):16194-16206. PubMed ID: 34596387 [TBL] [Abstract][Full Text] [Related]
15. Membrane Nanopores Induced by Nanotoroids via an Insertion and Pore-Forming Pathway. Wu F; Jin X; Guan Z; Lin J; Cai C; Wang L; Li Y; Lin S; Xu P; Gao L Nano Lett; 2021 Oct; 21(20):8545-8553. PubMed ID: 34623162 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore. Khan MS; Dosoky NS; Berdiev BK; Williams JD Eur Biophys J; 2016 Dec; 45(8):843-852. PubMed ID: 27480285 [TBL] [Abstract][Full Text] [Related]
17. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore. Liu J; Pham P; Haguet V; Sauter-Starace F; Leroy L; Roget A; Descamps E; Bouchet A; Buhot A; Mailley P; Livache T Anal Chem; 2012 Apr; 84(7):3254-61. PubMed ID: 22364436 [TBL] [Abstract][Full Text] [Related]
18. Selective ion sieving through arrays of sub-nanometer nanopores in chemically tunable 2D carbon membranes. van Deursen PMG; Tang Z; Winter A; Mohn MJ; Kaiser U; Turchanin AA; Schneider GF Nanoscale; 2019 Nov; 11(43):20785-20791. PubMed ID: 31656965 [TBL] [Abstract][Full Text] [Related]
19. Slit pores preferred over cylindrical pores for high selectivity in biomolecular filtration. Feinberg BJ; Hsiao JC; Park J; Zydney AL; Fissell WH; Roy S J Colloid Interface Sci; 2018 May; 517():176-181. PubMed ID: 29425954 [TBL] [Abstract][Full Text] [Related]
20. Alpha-Hederin Nanopore for Single Nucleotide Discrimination. Jeong KB; Luo K; Lee H; Lim MC; Yu J; Choi SJ; Kim KB; Jeon TJ; Kim YR ACS Nano; 2019 Feb; 13(2):1719-1727. PubMed ID: 30657663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]