These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36217004)
1. Direct production of olefins from syngas with ultrahigh carbon efficiency. Yu H; Wang C; Lin T; An Y; Wang Y; Chang Q; Yu F; Wei Y; Sun F; Jiang Z; Li S; Sun Y; Zhong L Nat Commun; 2022 Oct; 13(1):5987. PubMed ID: 36217004 [TBL] [Abstract][Full Text] [Related]
2. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477 [TBL] [Abstract][Full Text] [Related]
3. Recent advances in Co Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448 [TBL] [Abstract][Full Text] [Related]
4. Direct production of olefins Wang X; Lin T; Li J; Yu F; Lv D; Qi X; Wang H; Zhong L; Sun Y RSC Adv; 2019 Jan; 9(8):4131-4139. PubMed ID: 35520170 [TBL] [Abstract][Full Text] [Related]
5. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Xu Y; Li X; Gao J; Wang J; Ma G; Wen X; Yang Y; Li Y; Ding M Science; 2021 Feb; 371(6529):610-613. PubMed ID: 33542132 [TBL] [Abstract][Full Text] [Related]
6. Unleashing the Full Potential of Photo-Driven CO Hydrogenation to Light Olefins over Carbon-Coated CoMn-Based Catalysts. Li R; Li Y; Li Z; Ouyang S; Yuan H; Zhang T Adv Mater; 2023 Nov; 35(44):e2307217. PubMed ID: 37704217 [TBL] [Abstract][Full Text] [Related]
7. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966 [TBL] [Abstract][Full Text] [Related]
8. Selective conversion of syngas to light olefins. Jiao F; Li J; Pan X; Xiao J; Li H; Ma H; Wei M; Pan Y; Zhou Z; Li M; Miao S; Li J; Zhu Y; Xiao D; He T; Yang J; Qi F; Fu Q; Bao X Science; 2016 Mar; 351(6277):1065-8. PubMed ID: 26941314 [TBL] [Abstract][Full Text] [Related]
9. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303 [TBL] [Abstract][Full Text] [Related]
10. Directly Converting Syngas to Linear α-Olefins over Core-Shell Fe Wang J; Xu Y; Ma G; Lin J; Wang H; Zhang C; Ding M ACS Appl Mater Interfaces; 2018 Dec; 10(50):43578-43587. PubMed ID: 30484308 [TBL] [Abstract][Full Text] [Related]
11. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas. Jeske K; Kizilkaya AC; López-Luque I; Pfänder N; Bartsch M; Concepción P; Prieto G ACS Catal; 2021 Apr; 11(8):4784-4798. PubMed ID: 33889436 [TBL] [Abstract][Full Text] [Related]
12. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis. Pan X; Jiao F; Miao D; Bao X Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417 [TBL] [Abstract][Full Text] [Related]
13. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. Cheng K; Gu B; Liu X; Kang J; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2016 Apr; 55(15):4725-8. PubMed ID: 26961855 [TBL] [Abstract][Full Text] [Related]
14. Direct synthesis of extra-heavy olefins from carbon monoxide and water. Wang C; Du J; Zeng L; Li Z; Dai Y; Li X; Peng Z; Wu W; Li H; Zeng J Nat Commun; 2023 Apr; 14(1):1857. PubMed ID: 37012291 [TBL] [Abstract][Full Text] [Related]
15. Role of Zr loading into In Portillo A; Ateka A; Ereña J; Bilbao J; Aguayo AT J Environ Manage; 2022 Aug; 316():115329. PubMed ID: 35658264 [TBL] [Abstract][Full Text] [Related]
16. Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. Lin T; Qi X; Wang X; Xia L; Wang C; Yu F; Wang H; Li S; Zhong L; Sun Y Angew Chem Int Ed Engl; 2019 Mar; 58(14):4627-4631. PubMed ID: 30710403 [TBL] [Abstract][Full Text] [Related]
17. Selective Conversion of Syngas to Olefins via Novel Cu-Promoted Fe/RGO and Fe-Mn/RGO Fischer-Tropsch Catalysts: Fixed-Bed Reactor vs Slurry-Bed Reactor. Nasser AH; El-Bery HM; ELnaggar H; Basha IK; El-Moneim AA ACS Omega; 2021 Nov; 6(46):31099-31111. PubMed ID: 34841152 [TBL] [Abstract][Full Text] [Related]
18. Efficient conversion of syngas to linear α-olefins by phase-pure χ-Fe Wang P; Chiang FK; Chai J; Dugulan AI; Dong J; Chen W; Broos RJP; Feng B; Song Y; Lv Y; Lin Q; Wang R; Filot IAW; Men Z; Hensen EJM Nature; 2024 Nov; 635(8037):102-107. PubMed ID: 39415021 [TBL] [Abstract][Full Text] [Related]
19. High Selectivity to Aromatics by a Mg and Na Co-modified Catalyst in Direct Conversion of Syngas. Yang S; Li M; Nawaz MA; Song G; Xiao W; Wang Z; Liu D ACS Omega; 2020 May; 5(20):11701-11709. PubMed ID: 32478261 [TBL] [Abstract][Full Text] [Related]
20. A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. Ronda-Lloret M; Rothenberg G; Shiju NR ChemSusChem; 2019 Sep; 12(17):3896-3914. PubMed ID: 31166079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]