BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36217253)

  • 1. Chromatic organization of retinal photoreceptors during eye migration of Atlantic halibut (Hippoglossus hippoglossus).
    Bolstad K; Novales Flamarique I
    J Comp Neurol; 2023 Feb; 531(2):256-280. PubMed ID: 36217253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreceptor distributions, visual pigments and the opsin repertoire of Atlantic halibut (Hippoglossus hippoglossus).
    Bolstad K; Novales Flamarique I
    Sci Rep; 2022 May; 12(1):8062. PubMed ID: 35577858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topography of different photoreceptor cell types in the larval retina of Atlantic halibut (Hippoglossus hippoglossus).
    Helvik JV; Drivenes Ø ; Harboe T; Seo HC
    J Exp Biol; 2001 Jul; 204(Pt 14):2553-9. PubMed ID: 11511671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus).
    Helvik JV; Drivenes O; Naess TH; Fjose A; Seo HC
    Vis Neurosci; 2001; 18(5):767-80. PubMed ID: 11925012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development.
    Cheng CL; Flamarique IN
    J Exp Biol; 2007 Dec; 210(Pt 23):4123-35. PubMed ID: 18025012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreceptor distribution in the retina of adult Pacific salmon: corner cones express blue opsin.
    Cheng CL; Flamarique IN
    Vis Neurosci; 2007; 24(3):269-76. PubMed ID: 17592670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors.
    Flamarique IN; Cheng CL; Bergstrom C; Reimchen TE
    J Exp Biol; 2013 Feb; 216(Pt 4):656-67. PubMed ID: 23077162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupted eye and head development in rainbow trout with reduced ultraviolet (sws1) opsin expression.
    Novales Flamarique I; Fujihara R; Yazawa R; Bolstad K; Gowen B; Yoshizaki G
    J Comp Neurol; 2021 Aug; 529(11):3013-3031. PubMed ID: 33778962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreceptor differentiation during retinal development, growth, and regeneration in a metamorphic vertebrate.
    Mader MM; Cameron DA
    J Neurosci; 2004 Dec; 24(50):11463-72. PubMed ID: 15601953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice.
    Fei Y
    Mol Vis; 2003 Feb; 9():31-42. PubMed ID: 12592228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.
    Arbogast P; Glösmann M; Peichl L
    PLoS One; 2013; 8(11):e80910. PubMed ID: 24260509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of opsin expression and apoptosis in determination of cone types in human retina.
    Cornish EE; Xiao M; Yang Z; Provis JM; Hendrickson AE
    Exp Eye Res; 2004 Jun; 78(6):1143-54. PubMed ID: 15109921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Straying from the flatfish retinal plan: Cone photoreceptor patterning in the common sole (Solea solea) and the Senegalese sole (Solea senegalensis).
    Frau S; Novales Flamarique I; Keeley PW; Reese BE; Muñoz-Cueto JA
    J Comp Neurol; 2020 Oct; 528(14):2283-2307. PubMed ID: 32103501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field.
    Nadal-Nicolás FM; Kunze VP; Ball JM; Peng BT; Krishnan A; Zhou G; Dong L; Li W
    Elife; 2020 May; 9():. PubMed ID: 32463363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina.
    Sherry DM; Bui DD; Degrip WJ
    Vis Neurosci; 1998; 15(6):1175-87. PubMed ID: 9839981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal expression of rod and cone opsins in embryonic goldfish retina predicts the spatial organization of the cone mosaic.
    Stenkamp DL; Hisatomi O; Barthel LK; Tokunaga F; Raymond PA
    Invest Ophthalmol Vis Sci; 1996 Feb; 37(2):363-76. PubMed ID: 8603841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two mechanisms of retinal photoreceptor plasticity underlie rapid adaptation to novel light environments.
    Bolstad K; Novales Flamarique I
    J Comp Neurol; 2023 Jul; 531(10):1080-1094. PubMed ID: 37071606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thyroid hormone accelerates opsin expression during early photoreceptor differentiation and induces opsin switching in differentiated TRα-expressing cones of the salmonid retina.
    Gan KJ; Novales Flamarique I
    Dev Dyn; 2010 Oct; 239(10):2700-13. PubMed ID: 20730870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel opsin switches in multiple cone types of the starry flounder retina: tuning visual pigment composition for a demersal life style.
    Savelli I; Novales Flamarique I; Iwanicki T; Taylor JS
    Sci Rep; 2018 Mar; 8(1):4763. PubMed ID: 29555918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal expression of cone opsins during monkey retinal development.
    Bumsted K; Jasoni C; Szél A; Hendrickson A
    J Comp Neurol; 1997 Feb; 378(1):117-34. PubMed ID: 9120051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.