These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36217575)

  • 21. The proteins of Vent-family and their mRNAs are located in different areas of the tails of Zebrafish and Xenopus embryos.
    Pshennikova ES; Voronina AS
    Int J Biochem Cell Biol; 2016 Oct; 79():388-392. PubMed ID: 27620076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Cement gland as the adhesion organ in Xenopus laevis embryos].
    Pshennikova ES; Voronina AS
    Ontogenez; 2012; 43(1):3-13. PubMed ID: 22567923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The embryonic development of Xenopus laevis under a low frequency electric field.
    Boga A; Binokay S; Emre M; Sertdemir Y
    In Vitro Cell Dev Biol Anim; 2012 Jun; 48(6):385-91. PubMed ID: 22723004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a second Xenopus twisted gastrulation gene.
    Oelgeschläger M; Tran U; Grubisic K; De Robertis EM
    Int J Dev Biol; 2004 Feb; 48(1):57-61. PubMed ID: 15005575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system.
    Banach M; Edholm ES; Robert J
    Dev Biol; 2017 Jun; 426(2):261-269. PubMed ID: 27318386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development.
    Nakayama T; Nakajima K; Cox A; Fisher M; Howell M; Fish MB; Yaoita Y; Grainger RM
    Dev Biol; 2017 Jun; 426(2):472-486. PubMed ID: 27595926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tracing of Xenopus tropicalis germ plasm and presumptive primordial germ cells with the Xenopus tropicalis DAZ-like gene.
    Sekizaki H; Takahashi S; Tanegashima K; Onuma Y; Haramoto Y; Asashima M
    Dev Dyn; 2004 Feb; 229(2):367-72. PubMed ID: 14745962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape.
    Nam SW; Chae JP; Kwon YH; Son MY; Bae JS; Park MJ
    Biochem Biophys Res Commun; 2021 Sep; 569():29-34. PubMed ID: 34225077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ectopic expression of prelamin A in early Xenopus embryos induces apoptosis.
    Peter A; Stick R
    Eur J Cell Biol; 2008 Nov; 87(11):879-91. PubMed ID: 18675490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification, characterization, and effects of Xenopus laevis PNAS-4 gene on embryonic development.
    Yan F; Ruan XZ; Yang HS; Yao SH; Zhao XY; Gou LT; Ma FX; Yuan Z; Deng HX; Wei YQ
    J Biomed Biotechnol; 2010; 2010():134764. PubMed ID: 20454583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal and spatial expression patterns of FoxN genes in Xenopus laevis embryos.
    Schuff M; Rössner A; Donow C; Knöchel W
    Int J Dev Biol; 2006; 50(4):429-34. PubMed ID: 16525939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of three synuclein genes in Xenopus laevis.
    Wang C; Liu Y; Chan WY; Chan SO; Grunz H; Zhao H
    Dev Dyn; 2011 Aug; 240(8):2028-33. PubMed ID: 21761485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Techniques and probes for the study of Xenopus tropicalis development.
    Khokha MK; Chung C; Bustamante EL; Gaw LW; Trott KA; Yeh J; Lim N; Lin JC; Taverner N; Amaya E; Papalopulu N; Smith JC; Zorn AM; Harland RM; Grammer TC
    Dev Dyn; 2002 Dec; 225(4):499-510. PubMed ID: 12454926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular and Molecular Characterization of the Effects of the Zebrafish Embryo Genotyper Protocol.
    Douek AM; Klein EI; Kaslin J; Currie PD; Ruparelia AA
    Zebrafish; 2021 Feb; 18(1):92-95. PubMed ID: 33481695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas9-Based Functional Analysis in Amphibians: Xenopus laevis, Xenopus tropicalis, and Pleurodeles waltl.
    Suzuki M; Iida M; Hayashi T; Suzuki KT
    Methods Mol Biol; 2023; 2637():341-357. PubMed ID: 36773159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation and Care of Xenopus laevis and Xenopus tropicalis Embryos.
    Wlizla M; McNamara S; Horb ME
    Methods Mol Biol; 2018; 1865():19-32. PubMed ID: 30151756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Xenopus tropicalis: an ideal experimental animal in amphibia.
    Kashiwagi K; Kashiwagi A; Kurabayashi A; Hanada H; Nakajima K; Okada M; Takase M; Yaoita Y
    Exp Anim; 2010; 59(4):395-405. PubMed ID: 20660986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small RNA profiling of Xenopus embryos reveals novel miRNAs and a new class of small RNAs derived from intronic transposable elements.
    Harding JL; Horswell S; Heliot C; Armisen J; Zimmerman LB; Luscombe NM; Miska EA; Hill CS
    Genome Res; 2014 Jan; 24(1):96-106. PubMed ID: 24065776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An aryl hydrocarbon receptor repressor from Xenopus laevis: function, expression, and role in dioxin responsiveness during frog development.
    Zimmermann AL; King EA; Dengler E; Scogin SR; Powell WH
    Toxicol Sci; 2008 Jul; 104(1):124-34. PubMed ID: 18385208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microinjection of
    Lane M; Mis EK; Khokha MK
    Cold Spring Harb Protoc; 2022 Apr; 2022(4):Pdb.prot107644. PubMed ID: 34244348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.