These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 36217839)
1. High ionic conductivity and ion conduction mechanism in ZIF-8 based quasi-solid-state electrolytes: a positron annihilation and broadband dielectric spectroscopy study. Utpalla P; Mor J; Pujari PK; Sharma SK Phys Chem Chem Phys; 2022 Oct; 24(40):24999-25009. PubMed ID: 36217839 [TBL] [Abstract][Full Text] [Related]
2. On enhancing the Li-ion conductivity of quasi-solid-state electrolytes by suppressing the flexibility of zeolitic imidazolate framework-8 Utpalla P; Mor J; Sharma SK Phys Chem Chem Phys; 2023 Feb; 25(5):3959-3968. PubMed ID: 36648501 [TBL] [Abstract][Full Text] [Related]
3. ZIF-8-Based Quasi-Solid-State Electrolyte for Lithium Batteries. Sun C; Zhang JH; Yuan XF; Duan JN; Deng SW; Fan JM; Chang JK; Zheng MS; Dong QF ACS Appl Mater Interfaces; 2019 Dec; 11(50):46671-46677. PubMed ID: 31738039 [TBL] [Abstract][Full Text] [Related]
4. Strategies to improve the ionic conductivity of quasi-solid-state electrolytes based on metal-organic frameworks. Chen C; Luo X Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38810610 [TBL] [Abstract][Full Text] [Related]
5. Insight into the Isoreticularity of Li-MOFs for the Design of Low-Density Solid and Quasi-Solid Electrolytes. Butreddy P; Wijesingha M; Laws S; Pathiraja G; Mo Y; Rathnayake H Chem Mater; 2023 Dec; 35(23):9857-9878. PubMed ID: 38107191 [TBL] [Abstract][Full Text] [Related]
6. Rational Design of Ion Transport Paths at the Interface of Metal-Organic Framework Modified Solid Electrolyte. Xia Y; Xu N; Du L; Cheng Y; Lei S; Li S; Liao X; Shi W; Xu L; Mai L ACS Appl Mater Interfaces; 2020 May; 12(20):22930-22938. PubMed ID: 32348110 [TBL] [Abstract][Full Text] [Related]
7. Decoupling of ion-transport from polymer segmental relaxation and higher ionic-conductivity in poly(ethylene oxide)/succinonitrile composite-based electrolytes having low lithium salt doping. Mor J; Sharma SK Phys Chem Chem Phys; 2024 May; 26(17):13306-13315. PubMed ID: 38639464 [TBL] [Abstract][Full Text] [Related]
8. A polyethylene oxide/metal-organic framework composite solid electrolyte with uniform Li deposition and stability for lithium anode by immobilizing anions. Dong R; Zheng J; Yuan J; Li Y; Zhang T; Liu Y; Liu Y; Sun Y; Zhong B; Chen Y; Wu Z; Guo X J Colloid Interface Sci; 2022 Aug; 620():47-56. PubMed ID: 35405565 [TBL] [Abstract][Full Text] [Related]
10. A Composite of Hierarchical Porous MOFs and Halloysite Nanotubes as Single-Ion-Conducting Electrolyte Toward High-Performance Solid-State Lithium-Ion Batteries. Tao F; Wang X; Jin S; Tian L; Liu Z; Kang X; Liu Z Adv Mater; 2023 Jul; 35(29):e2300687. PubMed ID: 37086734 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Single-Ion Conductors Based on Liquid Crystal Polymer Network for Quasi-Solid-State Lithium Ion Batteries. Peng H; Fang X; Huang W; Liu W; Yang Y; Zhou Q; Li Y ACS Appl Mater Interfaces; 2024 Aug; 16(34):44350-44360. PubMed ID: 39145510 [TBL] [Abstract][Full Text] [Related]
12. Ionic Liquid-Impregnated ZIF-8/Polypropylene Solid-like Electrolyte for Dendrite-free Lithium-Metal Batteries. Qi X; Cai D; Wang X; Xia X; Gu C; Tu J ACS Appl Mater Interfaces; 2022 Feb; 14(5):6859-6868. PubMed ID: 35080368 [TBL] [Abstract][Full Text] [Related]
13. Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High Ionic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium-Sulfur Battery. Zhang T; Zhang J; Yang S; Li Y; Dong R; Yuan J; Liu Y; Wu Z; Song Y; Zhong Y; Xiang W; Chen Y; Zhong B; Guo X ACS Appl Mater Interfaces; 2021 Sep; 13(37):44497-44508. PubMed ID: 34506122 [TBL] [Abstract][Full Text] [Related]
14. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. Wu Z; Xie Z; Yoshida A; Wang J; Yu T; Wang Z; Hao X; Abudula A; Guan G J Colloid Interface Sci; 2020 Apr; 565():110-118. PubMed ID: 31935584 [TBL] [Abstract][Full Text] [Related]
15. Significantly enhanced lithium-ion conductivity of solid-state electrolytes Wang X; Tian L; Tao F; Liu M; Jin S; Liu Z Dalton Trans; 2023 Jul; 52(29):10222-10230. PubMed ID: 37436096 [TBL] [Abstract][Full Text] [Related]
17. Toward High-Performance Metal-Organic-Framework-Based Quasi-Solid-State Electrolytes: Tunable Structures and Electrochemical Properties. Dong P; Zhang X; Hiscox W; Liu J; Zamora J; Li X; Su M; Zhang Q; Guo X; McCloy J; Song MK Adv Mater; 2023 Aug; 35(32):e2211841. PubMed ID: 37130704 [TBL] [Abstract][Full Text] [Related]
18. Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires. Liu W; Lin D; Sun J; Zhou G; Cui Y ACS Nano; 2016 Dec; 10(12):11407-11413. PubMed ID: 28024352 [TBL] [Abstract][Full Text] [Related]
19. Ion Transport Mechanism of a Gel Electrolyte Comprising a Salt in Binary Plastic Crystalline Mixtures Confined inside a Polymer Network. Sen S; Malunavar S; Bhattacharyya AJ J Phys Chem B; 2016 Sep; 120(38):10153-10161. PubMed ID: 27598796 [TBL] [Abstract][Full Text] [Related]
20. Hollow-Particles Quasi-Solid-State Electrolytes with Biomimetic Ion Channels for High-Performance Lithium-Metal Batteries. Liu Z; Chen W; Zhang F; Wu F; Chen R; Li L Small; 2023 May; 19(18):e2206655. PubMed ID: 36737835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]