These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36218036)

  • 1. Network model of active elastic shells swollen by hydrostatic pressure.
    Maji A; Rabin Y
    Soft Matter; 2022 Oct; 18(41):7981-7989. PubMed ID: 36218036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuating shells under pressure.
    Paulose J; Vliegenthart GA; Gompper G; Nelson DR
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19551-6. PubMed ID: 23150558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation of the hydrostatic skeleton. The physical equivalent, mathematics and application to worm-like forms.
    Wadepuhl M; Beyn WJ
    J Theor Biol; 1989 Feb; 136(4):379-402. PubMed ID: 2811399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying essential pairwise interactions in elastic network model using the alpha shape theory.
    Xia F; Tong D; Yang L; Wang D; Hoi SC; Koehl P; Lu L
    J Comput Chem; 2014 Jun; 35(15):1111-21. PubMed ID: 24648309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of shells in complex networks.
    Shao J; Buldyrev SV; Braunstein LA; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036105. PubMed ID: 19905178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling Dynamics of Nanoscale Elastic Shells Driven by Active Particles.
    Tian Y; Liang H; Dobrynin AV
    ACS Cent Sci; 2018 Nov; 4(11):1537-1544. PubMed ID: 30555906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposed spring network cell model based on a minimum energy concept.
    Ujihara Y; Nakamura M; Miyazaki H; Wada S
    Ann Biomed Eng; 2010 Apr; 38(4):1530-8. PubMed ID: 20108165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical response of collagen molecule under hydrostatic compression.
    Saini K; Kumar N
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():720-726. PubMed ID: 25687001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random three-dimensional jammed packings of elastic shells acting as force sensors.
    Jose J; van Blaaderen A; Imhof A
    Phys Rev E; 2016 Jun; 93(6):062901. PubMed ID: 27415341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slip Spring-Based Mesoscopic Simulations of Polymer Networks: Methodology and the Corresponding Computational Code.
    Megariotis G; Vogiatzis GG; Sgouros AP; Theodorou DN
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The diversity of hydrostatic skeletons.
    Kier WM
    J Exp Biol; 2012 Apr; 215(Pt 8):1247-57. PubMed ID: 22442361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly.
    Weliky M; Oster G
    Development; 1990 Jun; 109(2):373-86. PubMed ID: 2401201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian dynamics simulations with stiff finitely extensible nonlinear elastic-Fraenkel springs as approximations to rods in bead-rod models.
    Hsieh CC; Jain S; Larson RG
    J Chem Phys; 2006 Jan; 124(4):044911. PubMed ID: 16460216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration.
    Neylon J; Qi X; Sheng K; Staton R; Pukala J; Manon R; Low DA; Kupelian P; Santhanam A
    Med Phys; 2015 Jan; 42(1):232-43. PubMed ID: 25563263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuating nonlinear spring theory: Strength, deformability, and toughness of biological nanoparticles from theoretical reconstruction of force-deformation spectra.
    Maksudov F; Kononova O; Llauró A; Ortega-Esteban A; Douglas T; Condezo GN; Martín CS; Marx KA; Wuite GJL; Roos WH; de Pablo PJ; Barsegov V
    Acta Biomater; 2021 Mar; 122():263-277. PubMed ID: 33359294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell resolved, multiparticle model of plastic tissue deformations and morphogenesis.
    Czirok A; Isai DG
    Phys Biol; 2014 Dec; 12(1):016005. PubMed ID: 25502910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions.
    Maxian O; Peláez RP; Mogilner A; Donev A
    PLoS Comput Biol; 2021 Dec; 17(12):e1009240. PubMed ID: 34871298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Condensation of Counterions Gives Rise to Contraction Transitions in a One-Dimensional Polyelectrolyte Gel.
    Manning GS
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.