These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36219135)

  • 1. Tafel-Kinetics-Controlled High-Speed Switching in a Electrochemical Graphene Field-Effect Transistor.
    Li S; Yu C; Wang Y; Zhang K; Jiang K; Wang Y; Zhang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47991-47998. PubMed ID: 36219135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gate-Controlled Neuromorphic Functional Transition in an Electrochemical Graphene Transistor.
    Yu C; Li S; Pan Z; Liu Y; Wang Y; Zhou S; Gao Z; Tian H; Jiang K; Wang Y; Zhang J
    Nano Lett; 2024 Feb; 24(5):1620-1628. PubMed ID: 38277130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Schottky Barrier of Single-Layer MoS
    Jang AR
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed graphene transistors with a self-aligned nanowire gate.
    Liao L; Lin YC; Bao M; Cheng R; Bai J; Liu Y; Qu Y; Wang KL; Huang Y; Duan X
    Nature; 2010 Sep; 467(7313):305-8. PubMed ID: 20811365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene field effect transistor without an energy gap.
    Jang MS; Kim H; Son YW; Atwater HA; Goddard WA
    Proc Natl Acad Sci U S A; 2013 May; 110(22):8786-9. PubMed ID: 23671093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.
    Rahmani M; Ahmadi MT; Abadi HK; Saeidmanesh M; Akbari E; Ismail R
    Nanoscale Res Lett; 2013 Jan; 8(1):55. PubMed ID: 23363692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Strain-Effect Transistor with Colossal ON/OFF Current Ratio Enabled by Reversible Nanocrack Formation in Metal Electrodes on Piezoelectric Substrates.
    Zheng Y; Sen D; Das S; Das S
    Nano Lett; 2023 Apr; 23(7):2536-2543. PubMed ID: 36996350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors.
    Awate SS; Mostek B; Kumari S; Dong C; Robinson JA; Xu K; Fullerton-Shirey SK
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15785-15796. PubMed ID: 36926818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional transistors beyond graphene and TMDCs.
    Liu Y; Duan X; Huang Y; Duan X
    Chem Soc Rev; 2018 Aug; 47(16):6388-6409. PubMed ID: 30079920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.
    Xia F; Farmer DB; Lin YM; Avouris P
    Nano Lett; 2010 Feb; 10(2):715-8. PubMed ID: 20092332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolayer Molybdenum Disulfide Transistors with Single-Atom-Thick Gates.
    Zhu Y; Li Y; Arefe G; Burke RA; Tan C; Hao Y; Liu X; Liu X; Yoo WJ; Dubey M; Lin Q; Hone JC
    Nano Lett; 2018 Jun; 18(6):3807-3813. PubMed ID: 29768000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in the fabrication of graphene transistors on flexible substrates.
    Fisichella G; Lo Verso S; Di Marco S; Vinciguerra V; SchilirĂ² E; Di Franco S; Lo Nigro R; Roccaforte F; Zurutuza A; Centeno A; Ravesi S; Giannazzo F
    Beilstein J Nanotechnol; 2017; 8():467-474. PubMed ID: 28326237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance flexible graphene field effect transistors with ion gel gate dielectrics.
    Kim BJ; Jang H; Lee SK; Hong BH; Ahn JH; Cho JH
    Nano Lett; 2010 Sep; 10(9):3464-6. PubMed ID: 20704323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulse Dynamics of Electric Double Layer Formation on All-Solid-State Graphene Field-Effect Transistors.
    Xu K; Islam MM; Guzman D; Seabaugh AC; Strachan A; Fullerton-Shirey SK
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43166-43176. PubMed ID: 30422628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the miniaturization limit of vertical organic field effect transistor (VOFET) with perforated graphene as a source electrode.
    Shukla G; Bisht RS; Kumar P
    Nanotechnology; 2023 Oct; 35(3):. PubMed ID: 37820593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer Graphene-WSe
    Tang HL; Chiu MH; Tseng CC; Yang SH; Hou KJ; Wei SY; Huang JK; Lin YF; Lien CH; Li LJ
    ACS Nano; 2017 Dec; 11(12):12817-12823. PubMed ID: 29182852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive-bias gate-controlled metal-insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics.
    Yajima T; Nishimura T; Toriumi A
    Nat Commun; 2015 Dec; 6():10104. PubMed ID: 26657761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric-double-layer field-effect transistors with ionic liquids.
    Fujimoto T; Awaga K
    Phys Chem Chem Phys; 2013 Jun; 15(23):8983-9006. PubMed ID: 23665738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(3-hexylthiophene) (P3HT)/graphene nanocomposite material based organic field effect transistor with enhanced mobility.
    Tiwari S; Singh AK; Prakash R
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2823-8. PubMed ID: 24734696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.