These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36219141)

  • 1. Enantioselective Direct Synthesis of C3-Hydroxyalkylated Pyrrole via an Amine-Catalyzed Aldol/Paal-Knorr Reaction Sequence.
    Pawar AP; Yadav J; Dolas AJ; Nagare YK; Iype E; Rangan K; Kumar I
    Org Lett; 2022 Oct; 24(41):7549-7554. PubMed ID: 36219141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalyst-free direct regiospecific multicomponent synthesis of C3-functionalized pyrroles.
    Pawar AP; Yadav J; Dolas AJ; Iype E; Rangan K; Kumar I
    Org Biomol Chem; 2022 Jul; 20(29):5747-5758. PubMed ID: 35775588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct catalytic synthesis of β-(C3)-substituted pyrroles: a complementary addition to the Paal-Knorr reaction.
    Pawar AP; Yadav J; Mir NA; Iype E; Rangan K; Anthal S; Kant R; Kumar I
    Chem Commun (Camb); 2021 Jan; 57(2):251-254. PubMed ID: 33306070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective organocatalytic one-pot amination/aza-Michael/aldol condensation reaction sequence: synthesis of 3-pyrrolines with a quaternary stereocenter.
    Desmarchelier A; Coeffard V; Moreau X; Greck C
    Chemistry; 2012 Oct; 18(41):13222-5. PubMed ID: 22927036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel one-pot pyrrole synthesis via a coupling-isomerization-Stetter-Paal-Knorr sequence.
    Braun RU; Zeitler K; Müller TJ
    Org Lett; 2001 Oct; 3(21):3297-300. PubMed ID: 11594818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Axially Chiral Compounds via Asymmetric Organocatalysis.
    Wang YB; Tan B
    Acc Chem Res; 2018 Feb; 51(2):534-547. PubMed ID: 29419282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polystyrenesulfonate-catalyzed synthesis of novel pyrroles through Paal-Knorr reaction.
    Banik M; Ramirez B; Reddy A; Bandyopadhyay D; Banik BK
    Org Med Chem Lett; 2012 Mar; 2(1):11. PubMed ID: 22452839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective Synthesis of N-N Amide-Pyrrole Atropisomers via Paal-Knorr Reaction.
    Wei Y; Sun F; Li G; Xu S; Zhang M; Hong L
    Org Lett; 2024 Mar; 26(12):2343-2348. PubMed ID: 38109522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Pot Synthesis of Chiral
    Hayashi Y; Tomikawa M; Mori N
    Org Lett; 2021 Aug; 23(15):5896-5900. PubMed ID: 34313446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic multicomponent synthesis of highly substituted pyrroles utilizing a one-pot sila-Stetter/Paal-Knorr strategy.
    Bharadwaj AR; Scheidt KA
    Org Lett; 2004 Jul; 6(14):2465-8. PubMed ID: 15228305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel enzyme-catalyzed synthesis of N-substituted pyrrole derivatives.
    Zheng H; Shi Q; Du K; Mei Y; Zhang P
    Mol Divers; 2013 May; 17(2):245-50. PubMed ID: 23361455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organocatalytic Atroposelective Synthesis of N-N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation.
    Chen KW; Chen ZH; Yang S; Wu SF; Zhang YC; Shi F
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202116829. PubMed ID: 35080808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediates in the Paal-Knorr synthesis of pyrroles. 4-Oxoaldehydes.
    Amarnath V; Amarnath K; Valentine WM; Eng MA; Graham DG
    Chem Res Toxicol; 1995 Mar; 8(2):234-8. PubMed ID: 7766806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-Unsubstituted Pyrroles by NHC-Catalyzed Three-Component Coupling: Direct Synthesis of a Versatile Atorvastatin Derivative.
    Fleige M; Glorius F
    Chemistry; 2017 Aug; 23(45):10773-10776. PubMed ID: 28666059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Elusive Paal-Knorr Intermediates in the Trofimov Synthesis of Pyrroles: Experimental and Theoretical Studies.
    Sączewski J; Fedorowicz J; Gdaniec M; Wiśniewska P; Sieniawska E; Drażba Z; Rzewnicka J; Balewski Ł
    J Org Chem; 2017 Sep; 82(18):9737-9743. PubMed ID: 28816456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Enantioselective Iridium-Catalyzed Cascade Double Allylation Strategy: Synthesis of Pyrrolidinoindolines with an All-Carbon Quaternary Stereocenter.
    Tian H; Peng F; Zhang P; Yang H; Fu H
    Org Lett; 2019 Oct; 21(20):8501-8505. PubMed ID: 31591895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brønsted Acid Catalyzed [6 + 2]-Cycloaddition of 2-Vinylindoles with in Situ Generated 2-Methide-2 H-pyrroles: Direct, Catalytic, and Enantioselective Synthesis of 2,3-Dihydro-1 H-pyrrolizines.
    Kallweit I; Schneider C
    Org Lett; 2019 Jan; 21(2):519-523. PubMed ID: 30620204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent modification of biological targets with natural products through Paal-Knorr pyrrole formation.
    Kornienko A; La Clair JJ
    Nat Prod Rep; 2017 Aug; 34(9):1051-1060. PubMed ID: 28808718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An expeditious and highly efficient synthesis of substituted pyrroles using a low melting deep eutectic mixture.
    Alvi S; Ali R
    Org Biomol Chem; 2021 Nov; 19(44):9732-9745. PubMed ID: 34730166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of two distinct pyrrole moiety-containing arenes from nitroanilines using Paal-Knorr followed by an indium-mediated reaction.
    Kim BH; Bae S; Go A; Lee H; Gong C; Lee BM
    Org Biomol Chem; 2016 Jan; 14(1):265-76. PubMed ID: 26593044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.