These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36219164)

  • 1.
    Iftkhar S; de Sá AGC; Velloso JPL; Aljarf R; Pires DEV; Ascher DB
    J Chem Inf Model; 2022 Oct; 62(20):4827-4836. PubMed ID: 36219164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. toxCSM: comprehensive prediction of small molecule toxicity profiles.
    de Sá AGC; Long Y; Portelli S; Pires DEV; Ascher DB
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35998885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. piscesCSM: prediction of anticancer synergistic drug combinations.
    AlJarf R; Rodrigues CHM; Myung Y; Pires DEV; Ascher DB
    J Cheminform; 2024 Jul; 16(1):81. PubMed ID: 39030592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pdCSM-cancer: Using Graph-Based Signatures to Identify Small Molecules with Anticancer Properties.
    Al-Jarf R; de Sá AGC; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Jul; 61(7):3314-3322. PubMed ID: 34213323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. epitope1D: accurate taxonomy-aware B-cell linear epitope prediction.
    da Silva BM; Ascher DB; Pires DEV
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37039696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Cardiotoxicity of Molecules Using Attention-Based Graph Neural Networks.
    Vinh T; Nguyen L; Trinh QH; Nguyen-Vo TH; Nguyen BP
    J Chem Inf Model; 2024 Mar; 64(6):1816-1827. PubMed ID: 38438914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. embryoTox: Using Graph-Based Signatures to Predict the Teratogenicity of Small Molecules.
    Aljarf R; Tang S; Pires DEV; Ascher DB
    J Chem Inf Model; 2023 Jan; 63(2):432-441. PubMed ID: 36595441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.
    Liu M; Zhang L; Li S; Yang T; Liu L; Zhao J; Liu H
    Toxicol Lett; 2020 Oct; 332():88-96. PubMed ID: 32629073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSM-peptides: A computational approach to rapid identification of therapeutic peptides.
    Rodrigues CHM; Garg A; Keizer D; Pires DEV; Ascher DB
    Protein Sci; 2022 Oct; 31(10):e4442. PubMed ID: 36173168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational determination of hERG-related cardiotoxicity of drug candidates.
    Lee HM; Yu MS; Kazmi SR; Oh SY; Rhee KH; Bae MA; Lee BH; Shin DS; Oh KS; Ceong H; Lee D; Na D
    BMC Bioinformatics; 2019 May; 20(Suppl 10):250. PubMed ID: 31138104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Quantitative structure-activity relationship model for prediction of cardiotoxicity of chemical components in traditional Chinese medicines].
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Jun; 49(3):551-556. PubMed ID: 28628163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity.
    Saravanan KM; Wan JF; Dai L; Zhang J; Zhang JZH; Zhang H
    Methods; 2024 Jun; 226():164-175. PubMed ID: 38702021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. kinCSM: Using graph-based signatures to predict small molecule CDK2 inhibitors.
    Zhou Y; Al-Jarf R; Alavi A; Nguyen TB; Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2022 Nov; 31(11):e4453. PubMed ID: 36305769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mycoCSM: Using Graph-Based Signatures to Identify Safe Potent Hits against Mycobacteria.
    Pires DEV; Ascher DB
    J Chem Inf Model; 2020 Jul; 60(7):3450-3456. PubMed ID: 32615035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pdCSM-PPI: Using Graph-Based Signatures to Identify Protein-Protein Interaction Inhibitors.
    Rodrigues CHM; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Nov; 61(11):5438-5445. PubMed ID: 34719929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of models for predicting Torsade de Pointes cardiac arrhythmias using perceptron neural networks.
    Sharifi M; Buzatu D; Harris S; Wilkes J
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):497. PubMed ID: 29297274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Drug-Induced Liver Injury Using Ensemble Learning Methods and Molecular Fingerprints.
    Ai H; Chen W; Zhang L; Huang L; Yin Z; Hu H; Zhao Q; Zhao J; Liu H
    Toxicol Sci; 2018 Sep; 165(1):100-107. PubMed ID: 29788510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LEGO-CSM: a tool for functional characterization of proteins.
    Nguyen TB; de Sá AGC; Rodrigues CHM; Pires DEV; Ascher DB
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37382560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining multi-dimensional molecular fingerprints to predict the hERG cardiotoxicity of compounds.
    Ding W; Nan Y; Wu J; Han C; Xin X; Li S; Liu H; Zhang L
    Comput Biol Med; 2022 May; 144():105390. PubMed ID: 35290808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction.
    Myung Y; de Sá AGC; Ascher DB
    Nucleic Acids Res; 2024 Jul; 52(W1):W469-W475. PubMed ID: 38634808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.