These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Multi-Ionic Hydrogel with Outstanding Heat-to-Electrical Performance for Low-Grade Heat Harvesting. Zhou Y; Dong Z; He Y; Zhu W; Yuan Y; Zeng H; Li C; Chen S; Sun K Chem Asian J; 2022 Nov; 17(22):e202200850. PubMed ID: 36074542 [TBL] [Abstract][Full Text] [Related]
5. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions. Chen B; Chen Q; Xiao S; Feng J; Zhang X; Wang T Sci Adv; 2021 Nov; 7(48):eabi7233. PubMed ID: 34818039 [TBL] [Abstract][Full Text] [Related]
6. Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial cellulose coordination for self-powered sensors. Chen L; Lou J; Rong X; Liu Z; Ding Q; Li X; Jiang Y; Ji X; Han W Carbohydr Polym; 2023 Dec; 321():121310. PubMed ID: 37739507 [TBL] [Abstract][Full Text] [Related]
7. Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K He Y; Zhang Q; Cheng H; Liu Y; Shu Y; Geng Y; Zheng Y; Qin B; Zhou Y; Chen S; Li J; Li M; Odunmbaku GO; Li C; Shumilova T; Ouyang J; Sun K J Phys Chem Lett; 2022 May; 13(20):4621-4627. PubMed ID: 35587455 [TBL] [Abstract][Full Text] [Related]
8. Giant Negative Thermopower Enabled by Bidirectionally Anchored Cations in Multifunctional Polymers. Chen B; Zhang X; Yang J; Feng J; Wang T ACS Appl Mater Interfaces; 2023 May; 15(20):24483-24493. PubMed ID: 37161282 [TBL] [Abstract][Full Text] [Related]
9. Giant Thermopower of Hydrogen Ion Enhanced by a Strong Hydrogen Bond System. Chen Q; Chen B; Xiao S; Feng J; Yang J; Yue Q; Zhang X; Wang T ACS Appl Mater Interfaces; 2022 May; 14(17):19304-19314. PubMed ID: 35468291 [TBL] [Abstract][Full Text] [Related]
10. Stretchable and Durable Bacterial Cellulose-Based Thermocell with Improved Thermopower Density for Low-Grade Heat Harvesting. Wu Z; Wang B; Li J; Jia Y; Chen S; Wang H; Chen L; Shuai L Nano Lett; 2023 Nov; 23(22):10297-10304. PubMed ID: 37955657 [TBL] [Abstract][Full Text] [Related]
11. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Li T; Zhang X; Lacey SD; Mi R; Zhao X; Jiang F; Song J; Liu Z; Chen G; Dai J; Yao Y; Das S; Yang R; Briber RM; Hu L Nat Mater; 2019 Jun; 18(6):608-613. PubMed ID: 30911121 [TBL] [Abstract][Full Text] [Related]
12. Mixed Ionic-Electronic Conducting Hydrogels with Carboxylated Carbon Nanotubes for High Performance Wearable Thermoelectric Harvesters. Lee CY; Lin YT; Hong SH; Wang CH; Jeng US; Tung SH; Liu CL ACS Appl Mater Interfaces; 2023 Dec; 15(48):56072-56083. PubMed ID: 37982689 [TBL] [Abstract][Full Text] [Related]
13. Thermoelectric Converters Based on Ionic Conductors. Wu X; Gao N; Jia H; Wang Y Chem Asian J; 2021 Jan; 16(2):129-141. PubMed ID: 33289291 [TBL] [Abstract][Full Text] [Related]
14. Ionic Thermoelectric Generators in Vertical and Planar Topologies Based on Fluorinated Polymer Hybrid Materials with Ionic Liquids. Pereira N; Afonso L; Salado M; Tubio CR; Correia DM; Costa CM; Lanceros-Mendez S Macromol Rapid Commun; 2024 May; 45(10):e2400041. PubMed ID: 38366845 [TBL] [Abstract][Full Text] [Related]
15. Copper-coordinated cellulose ion conductors for solid-state batteries. Yang C; Wu Q; Xie W; Zhang X; Brozena A; Zheng J; Garaga MN; Ko BH; Mao Y; He S; Gao Y; Wang P; Tyagi M; Jiao F; Briber R; Albertus P; Wang C; Greenbaum S; Hu YY; Isogai A; Winter M; Xu K; Qi Y; Hu L Nature; 2021 Oct; 598(7882):590-596. PubMed ID: 34671167 [TBL] [Abstract][Full Text] [Related]
16. Ultrasensitive Flexible Thermal Sensor Arrays based on High-Thermopower Ionic Thermoelectric Hydrogel. Han Y; Wei H; Du Y; Li Z; Feng SP; Huang B; Xu D Adv Sci (Weinh); 2023 Sep; 10(25):e2302685. PubMed ID: 37395372 [TBL] [Abstract][Full Text] [Related]
17. Bacterial cellulose-based dual chemical reaction coupled hydrogel thermocells for efficient heat harvesting. Zong Y; Lou J; Li H; Li X; Jiang Y; Ding Q; Liu Z; Han W Carbohydr Polym; 2022 Oct; 294():119789. PubMed ID: 35868797 [TBL] [Abstract][Full Text] [Related]
18. Proton-Coupled Electron Transfer Aided Thermoelectric Energy Conversion and Storage. Wang Y; Dai Y; Li L; Yu L; Zeng W Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202307947. PubMed ID: 37421169 [TBL] [Abstract][Full Text] [Related]
19. Ion-Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density. He Y; Li S; Chen R; Liu X; Odunmbaku GO; Fang W; Lin X; Ou Z; Gou Q; Wang J; Ouedraogo NAN; Li J; Li M; Li C; Zheng Y; Chen S; Zhou Y; Sun K Nanomicro Lett; 2023 Apr; 15(1):101. PubMed ID: 37052861 [TBL] [Abstract][Full Text] [Related]
20. Promoting Dual Electronic and Ionic Transport in PEDOT by Embedding Carbon Nanotubes for Large Thermoelectric Responses. Choi K; Kim SL; Yi SI; Hsu JH; Yu C ACS Appl Mater Interfaces; 2018 Jul; 10(28):23891-23899. PubMed ID: 29947512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]