Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 36219519)

  • 1. Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI.
    Gao J; Zhong X; Li W; Li Q; Shao H; Wang Z; Dai Y; Ma H; Shi Y; Zhang H; Duan S; Zhang K; Yang P; Zhao F; Zhang H; Xie H; Mao N
    J Magn Reson Imaging; 2023 Jun; 57(6):1842-1853. PubMed ID: 36219519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multitask Deep Learning-Based Whole-Process System for Automatic Diagnosis of Breast Lesions and Axillary Lymph Node Metastasis Discrimination from Dynamic Contrast-Enhanced-MRI: A Multicenter Study.
    Zhou H; Hua Z; Gao J; Lin F; Chen Y; Zhang S; Zheng T; Wang Z; Shao H; Li W; Liu F; Li Q; Chen J; Wang X; Zhao F; Qu N; Xie H; Ma H; Zhang H; Mao N
    J Magn Reson Imaging; 2024 May; 59(5):1710-1722. PubMed ID: 37497811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics.
    Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W
    J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer.
    Li X; Yang L; Jiao X
    Acad Radiol; 2023 Jul; 30(7):1281-1287. PubMed ID: 36376154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive prediction model of axillary lymph node status in patients with early-stage breast cancer: a feasibility study based on dynamic contrast-enhanced-MRI radiomics.
    Chen W; Lin G; Kong C; Wu X; Hu Y; Chen M; Xia S; Lu C; Xu M; Ji J
    Br J Radiol; 2024 Feb; 97(1154):439-450. PubMed ID: 38308028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI-Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN-RNN Model.
    Guo YJ; Yin R; Zhang Q; Han JQ; Dou ZX; Wang PB; Lu H; Liu PF; Chen JJ; Ma WJ
    J Magn Reson Imaging; 2024 Jan; ():. PubMed ID: 38205712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiating axillary lymph node metastasis in invasive breast cancer patients: A comparison of radiomic signatures from multiparametric breast MR sequences.
    Chai R; Ma H; Xu M; Arefan D; Cui X; Liu Y; Zhang L; Wu S; Xu K
    J Magn Reson Imaging; 2019 Oct; 50(4):1125-1132. PubMed ID: 30848041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography.
    Wang Q; Lin Y; Ding C; Guan W; Zhang X; Jia J; Zhou W; Liu Z; Bai G
    Eur Radiol; 2024 Feb; ():. PubMed ID: 38337068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lymph node metastasis prediction and biological pathway associations underlying DCE-MRI deep learning radiomics in invasive breast cancer.
    Liu W; Chen W; Xia J; Lu Z; Fu Y; Li Y; Tan Z
    BMC Med Imaging; 2024 Apr; 24(1):91. PubMed ID: 38627678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Intra-peritumoral Textural Transition Analysis based on Dynamic Contrast-enhanced Magnetic Resonance Imaging.
    Zhan C; Hu Y; Wang X; Liu H; Xia L; Ai T
    Acad Radiol; 2022 Jan; 29 Suppl 1():S107-S115. PubMed ID: 33712393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI.
    Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y
    J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference of DCE-MRI Parameters at Different Time Points and Their Predictive Value for Axillary Lymph Node Metastasis of Breast Cancer.
    Ya G; Wen F; Xing-Ru L; Zhuan-Zhuan G; Jun-Qiang L
    Acad Radiol; 2022 Jan; 29 Suppl 1():S79-S86. PubMed ID: 33504446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-center study of a combined nomogram based on mammography and MRI to predict ALN metastasis in breast cancer.
    Hua Y; Peng Q; Han J; Fei J; Sun A
    Magn Reson Imaging; 2024 Jul; 110():128-137. PubMed ID: 38631535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics nomogram for predicting axillary lymph node metastasis in breast cancer based on DCE-MRI: A multicenter study.
    Zhang J; Zhang Z; Mao N; Zhang H; Gao J; Wang B; Ren J; Liu X; Zhang B; Dou T; Li W; Wang Y; Jia H
    J Xray Sci Technol; 2023; 31(2):247-263. PubMed ID: 36744360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer.
    Chen Y; Wang L; Dong X; Luo R; Ge Y; Liu H; Zhang Y; Wang D
    J Digit Imaging; 2023 Aug; 36(4):1323-1331. PubMed ID: 36973631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients.
    Liu S; Du S; Gao S; Teng Y; Jin F; Zhang L
    BMC Cancer; 2023 Jan; 23(1):15. PubMed ID: 36604679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning.
    Cong C; Li X; Zhang C; Zhang J; Sun K; Liu L; Ambale-Venkatesh B; Chen X; Wang Y
    J Magn Reson Imaging; 2024 Jan; 59(1):148-161. PubMed ID: 37013422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram.
    Liu Y; Li X; Zhu L; Zhao Z; Wang T; Zhang X; Cai B; Li L; Ma M; Ma X; Ming J
    Contrast Media Mol Imaging; 2022; 2022():6729473. PubMed ID: 36051932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Prediction of Axillary Lymph Node Metastasis in Breast Cancer Patients Using Clinical Implication-Applied Preprocessed CT Images.
    Park TY; Kwon LM; Hyeon J; Cho BJ; Kim BJ
    Curr Oncol; 2024 Apr; 31(4):2278-2288. PubMed ID: 38668072
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.