BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36219580)

  • 1. Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies.
    Solomon LA; Witten J; Kodali G; Moser CC; Dutton PL
    J Phys Chem B; 2022 Oct; 126(41):8177-8187. PubMed ID: 36219580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Construction of Redox Active Proteins.
    Moser CC; Sheehan MM; Ennist NM; Kodali G; Bialas C; Englander MT; Discher BM; Dutton PL
    Methods Enzymol; 2016; 580():365-88. PubMed ID: 27586341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox equilibria in hydroxylamine oxidoreductase. Electrostatic control of electron redistribution in multielectron oxidative processes.
    Kurnikov IV; Ratner MA; Pacheco AA
    Biochemistry; 2005 Feb; 44(6):1856-63. PubMed ID: 15697211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elementary tetrahelical protein design for diverse oxidoreductase functions.
    Farid TA; Kodali G; Solomon LA; Lichtenstein BR; Sheehan MM; Fry BA; Bialas C; Ennist NM; Siedlecki JA; Zhao Z; Stetz MA; Valentine KG; Anderson JLR; Wand AJ; Discher BM; Moser CC; Dutton PL
    Nat Chem Biol; 2013 Dec; 9(12):826-833. PubMed ID: 24121554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and In Vivo Loading of De Novo Proteins with Tetrapyrrole Cofactors.
    Curnow P; Anderson JLR
    Methods Mol Biol; 2022; 2397():137-155. PubMed ID: 34813063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energetics and evolution of oxidoreductases in deep time.
    McGuinness KN; Fehon N; Feehan R; Miller M; Mutter AC; Rybak LA; Nam J; AbuSalim JE; Atkinson JT; Heidari H; Losada N; Kim JD; Koder RL; Lu Y; Silberg JJ; Slusky JSG; Falkowski PG; Nanda V
    Proteins; 2024 Jan; 92(1):52-59. PubMed ID: 37596815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes-Similar Vehicle, Different Destination.
    Oosterheert W; Reis J; Gros P; Mattevi A
    Acc Chem Res; 2020 Sep; 53(9):1969-1980. PubMed ID: 32815713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical characterization of the sterol demethylase P450 from Mycobacterium tuberculosis, its cognate ferredoxin, and their interactions.
    McLean KJ; Warman AJ; Seward HE; Marshall KR; Girvan HM; Cheesman MR; Waterman MR; Munro AW
    Biochemistry; 2006 Jul; 45(27):8427-43. PubMed ID: 16819841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of heme A and heme B in a designed four-helix bundle: implications for a cytochrome c oxidase maquette.
    Gibney BR; Isogai Y; Rabanal F; Reddy KS; Grosset AM; Moser CC; Dutton PL
    Biochemistry; 2000 Sep; 39(36):11041-9. PubMed ID: 10998241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy.
    Dridge EJ; Watts CA; Jepson BJ; Line K; Santini JM; Richardson DJ; Butler CS
    Biochem J; 2007 Nov; 408(1):19-28. PubMed ID: 17688424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases.
    Grönberg KL; Roldán MD; Prior L; Butland G; Cheesman MR; Richardson DJ; Spiro S; Thomson AJ; Watmough NJ
    Biochemistry; 1999 Oct; 38(42):13780-6. PubMed ID: 10529222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme P460: A (Cross) Link to Nitric Oxide.
    Coleman RE; Lancaster KM
    Acc Chem Res; 2020 Dec; 53(12):2925-2935. PubMed ID: 33180458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum.
    Veríssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM
    Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct electrochemical analyses of human cytochromes b5 with a mutated heme pocket showed a good correlation between their midpoint and half wave potentials.
    Aono T; Sakamoto Y; Miura M; Takeuchi F; Hori H; Tsubaki M
    J Biomed Sci; 2010 Dec; 17(1):90. PubMed ID: 21129218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose.
    Burns KD; Pieper PA; Liu HW; Stankovich MT
    Biochemistry; 1996 Jun; 35(24):7879-89. PubMed ID: 8672489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox properties of Thermus thermophilus ba3: different electron-proton coupling in oxygen reductases?
    Sousa FL; Veríssimo AF; Baptista AM; Soulimane T; Teixeira M; Pereira MM
    Biophys J; 2008 Mar; 94(6):2434-41. PubMed ID: 18065462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of function in a minimalist heme-binding membrane protein.
    Shinde S; Cordova JM; Woodrum BW; Ghirlanda G
    J Biol Inorg Chem; 2012 Apr; 17(4):557-64. PubMed ID: 22307279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural engineering principles of electron tunnelling in biological oxidation-reduction.
    Page CC; Moser CC; Chen X; Dutton PL
    Nature; 1999 Nov; 402(6757):47-52. PubMed ID: 10573417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.