These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36219580)

  • 21. Heme redox potential control in de novo designed four-alpha-helix bundle proteins.
    Shifman JM; Gibney BR; Sharp RE; Dutton PL
    Biochemistry; 2000 Dec; 39(48):14813-21. PubMed ID: 11101297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes.
    Reddi AR; Reedy CJ; Mui S; Gibney BR
    Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzymes.
    Jenner LP; Kurth JM; van Helmont S; Sokol KP; Reisner E; Dahl C; Bradley JM; Butt JN; Cheesman MR
    J Biol Chem; 2019 Nov; 294(47):18002-18014. PubMed ID: 31467084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heme iron nitrosyl complex of MauG reveals an efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands.
    Fu R; Liu F; Davidson VL; Liu A
    Biochemistry; 2009 Dec; 48(49):11603-5. PubMed ID: 19911786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox properties and regulatory mechanism of the iron-quinone electron acceptor in photosystem II as revealed by FTIR spectroelectrochemistry.
    Kato Y; Noguchi T
    Photosynth Res; 2022 May; 152(2):135-151. PubMed ID: 34985636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles.
    Senge MO; MacGowan SA; O'Brien JM
    Chem Commun (Camb); 2015 Dec; 51(96):17031-63. PubMed ID: 26482230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary history of redox metal-binding domains across the tree of life.
    Harel A; Bromberg Y; Falkowski PG; Bhattacharya D
    Proc Natl Acad Sci U S A; 2014 May; 111(19):7042-7. PubMed ID: 24778258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of the redox centers of ethylbenzene dehydrogenase.
    Hagel C; Blaum B; Friedrich T; Heider J
    J Biol Inorg Chem; 2022 Feb; 27(1):143-154. PubMed ID: 34843002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning heme redox potentials in the cytochrome C subunit of photosynthetic reaction centers.
    Voigt P; Knapp EW
    J Biol Chem; 2003 Dec; 278(52):51993-2001. PubMed ID: 12975370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.
    Postnikova GB; Shekhovtsova EA
    Biochemistry (Mosc); 2016 Dec; 81(13):1735-1753. PubMed ID: 28260494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase.
    Bhagi-Damodaran A; Reed JH; Zhu Q; Shi Y; Hosseinzadeh P; Sandoval BA; Harnden KA; Wang S; Sponholtz MR; Mirts EN; Dwaraknath S; Zhang Y; Moënne-Loccoz P; Lu Y
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6195-6200. PubMed ID: 29802230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrophilic to amphiphilic design in redox protein maquettes.
    Discher BM; Koder RL; Moser CC; Dutton PL
    Curr Opin Chem Biol; 2003 Dec; 7(6):741-8. PubMed ID: 14644184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photochemically induced electron transfer.
    Bellelli A; Brunori M; Brzezinski P; Wilson MT
    Methods; 2001 Jun; 24(2):139-52. PubMed ID: 11384189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constructing a man-made c-type cytochrome maquette
    Anderson JLR; Armstrong CT; Kodali G; Lichtenstein BR; Watkins DW; Mancini JA; Boyle AL; Farid TA; Crump MP; Moser CC; Dutton PL
    Chem Sci; 2014 Feb; 5(2):507-514. PubMed ID: 24634717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineered proteins: redox properties and their applications.
    Prabhulkar S; Tian H; Wang X; Zhu JJ; Li CZ
    Antioxid Redox Signal; 2012 Dec; 17(12):1796-822. PubMed ID: 22435347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron transfer to the active site of the bacterial nitric oxide reductase is controlled by ligand binding to heme b₃.
    Field SJ; Roldan MD; Marritt SJ; Butt JN; Richardson DJ; Watmough NJ
    Biochim Biophys Acta; 2011 Apr; 1807(4):451-7. PubMed ID: 21296048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetics for oxidation of a bound manganese cofactor in modified bacterial reaction centers.
    Kálmán L; Williams JC; Allen JP
    Biochemistry; 2011 Apr; 50(16):3310-20. PubMed ID: 21375274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase.
    Canne C; Stephan I; Finsterbusch J; Lingens F; Kappl R; Fetzner S; Hüttermann J
    Biochemistry; 1997 Aug; 36(32):9780-90. PubMed ID: 9245410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rational Construction of Compact de Novo-Designed Biliverdin-Binding Proteins.
    Sheehan MM; Magaraci MS; Kuznetsov IA; Mancini JA; Kodali G; Moser CC; Dutton PL; Chow BY
    Biochemistry; 2018 Dec; 57(49):6752-6756. PubMed ID: 30468389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.