BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36219879)

  • 1. RUNX1-deficient human megakaryocytes demonstrate thrombopoietic and platelet half-life and functional defects.
    Lee K; Ahn HS; Estevez B; Poncz M
    Blood; 2023 Jan; 141(3):260-270. PubMed ID: 36219879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RUNX-1 haploinsufficiency causes a marked deficiency of megakaryocyte-biased hematopoietic progenitor cells.
    Estevez B; Borst S; Jarocha D; Sudunagunta V; Gonzalez M; Garifallou J; Hakonarson H; Gao P; Tan K; Liu P; Bagga S; Holdreith N; Tong W; Speck N; French DL; Gadue P; Poncz M
    Blood; 2021 May; 137(19):2662-2675. PubMed ID: 33569577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered platelet-megakaryocyte endocytosis and trafficking of albumin and fibrinogen in RUNX1 haplodeficiency.
    Del Carpio-Cano F; Mao G; Goldfinger LE; Wurtzel J; Guan L; Alam MA; Lee K; Poncz M; Rao AK
    Blood Adv; 2024 Apr; 8(7):1699-1714. PubMed ID: 38330198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A RUNX1-FPDMM rhesus macaque model reproduces the human phenotype and predicts challenges to curative gene therapies.
    Lee BC; Zhou Y; Bresciani E; Ozkaya N; Dulau-Florea A; Carrington B; Shin TH; Baena V; Syed ZA; Hong SG; Zhen T; Calvo KR; Liu P; Dunbar CE
    Blood; 2023 Jan; 141(3):231-237. PubMed ID: 36322931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human
    Li Y; Jin C; Bai H; Gao Y; Sun S; Chen L; Qin L; Liu PP; Cheng L; Wang QF
    Blood; 2018 Jan; 131(2):191-201. PubMed ID: 29101237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone Marrow Morphology Associated With Germline
    Chisholm KM; Denton C; Keel S; Geddis AE; Xu M; Appel BE; Cantor AB; Fleming MD; Shimamura A
    Pediatr Dev Pathol; 2019; 22(4):315-328. PubMed ID: 30600763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets.
    Matsubara Y; Ono Y; Suzuki H; Arai F; Suda T; Murata M; Ikeda Y
    PLoS One; 2013; 8(3):e58123. PubMed ID: 23469264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Packaging of supplemented urokinase into naked alpha-granules of
    Poncz M; Zaitsev SV; Ahn H; Kowalska MA; Bdeir K; Camire RM; Cines DB; Stepanova V
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RUNX1 and TGF-β signaling cross talk regulates Ca
    Raghuwanshi S; Dahariya S; Sharma DS; Kovuru N; Sahu I; Gutti RK
    FEBS J; 2020 Dec; 287(24):5411-5438. PubMed ID: 32281291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of inherited thrombocytopenia resulting from mutations in ETV6 or RUNX1 using a human pluripotent stem cell model.
    Borst S; Nations CC; Klein JG; Pavani G; Maguire JA; Camire RM; Drazer MW; Godley LA; French DL; Poncz M; Gadue P
    Stem Cell Reports; 2021 Jun; 16(6):1458-1467. PubMed ID: 34019812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical role of RUNX1 in governing megakaryocyte-primed hematopoietic stem cell differentiation.
    Wang C; Tu Z; Cai X; Wang W; Davis AK; Nattamai K; Paranjpe A; Dexheimer P; Wu J; Huang FL; Geiger H; Huang G; Zheng Y
    Blood Adv; 2023 Jun; 7(11):2590-2605. PubMed ID: 36661340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse RUNX1C regulates premegakaryocytic/erythroid output and maintains survival of megakaryocyte progenitors.
    Draper JE; Sroczynska P; Leong HS; Fadlullah MZH; Miller C; Kouskoff V; Lacaud G
    Blood; 2017 Jul; 130(3):271-284. PubMed ID: 28490570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of thrombocytopenia in platelet-type von Willebrand disease.
    Bury L; Malara A; Momi S; Petito E; Balduini A; Gresele P
    Haematologica; 2019 Jul; 104(7):1473-1481. PubMed ID: 30655369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defective RAB31-mediated megakaryocytic early endosomal trafficking of VWF, EGFR, and M6PR in RUNX1 deficiency.
    Jalagadugula G; Mao G; Goldfinger LE; Wurtzel J; Del Carpio-Cano F; Lambert MP; Estevez B; French DL; Poncz M; Rao AK
    Blood Adv; 2022 Sep; 6(17):5100-5112. PubMed ID: 35839075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual role of IL-21 in megakaryopoiesis and platelet homeostasis.
    Benbarche S; Strassel C; Angénieux C; Mallo L; Freund M; Gachet C; Lanza F; de la Salle H
    Haematologica; 2017 Apr; 102(4):637-646. PubMed ID: 28057742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM).
    Schlegelberger B; Heller PG
    Semin Hematol; 2017 Apr; 54(2):75-80. PubMed ID: 28637620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for RUNX1 in hematopoiesis and myeloid leukemia.
    Ichikawa M; Yoshimi A; Nakagawa M; Nishimoto N; Watanabe-Okochi N; Kurokawa M
    Int J Hematol; 2013 Jun; 97(6):726-34. PubMed ID: 23613270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Packaging of supplemented urokinase into alpha-granules of in vitro-grown megakaryocytes for targeted nascent clot lysis.
    Poncz M; Zaitsev S; Ahn H; Kowalska MA; Bdeir K; Dergilev KV; Ivanciu L; Camire RM; Cines DB; Stepanova V
    Blood Adv; 2024 May; ():. PubMed ID: 38805575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RNA-binding protein SRSF3 has an essential role in megakaryocyte maturation and platelet production.
    Heazlewood SY; Ahmad T; Mohenska M; Guo BB; Gangatirkar P; Josefsson EC; Ellis SL; Ratnadiwakara M; Cao H; Cao B; Heazlewood CK; Williams B; Fulton M; White JF; Ramialison M; Nilsson SK; Änkö ML
    Blood; 2022 Mar; 139(9):1359-1373. PubMed ID: 34852174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor.
    Jalagadugula G; Goldfinger LE; Mao G; Lambert MP; Rao AK
    Blood Adv; 2018 Apr; 2(7):797-806. PubMed ID: 29632235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.