These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36219959)

  • 21. High density lipoprotein-mediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts. A single- and multiphoton fluorescence approach.
    Frolov A; Petrescu A; Atshaves BP; So PT; Gratton E; Serrero G; Schroeder F
    J Biol Chem; 2000 Apr; 275(17):12769-80. PubMed ID: 10777574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ABCs of Sterol Transport.
    Plummer AM; Culbertson AT; Liao M
    Annu Rev Physiol; 2021 Feb; 83():153-181. PubMed ID: 33141631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescent probes and degraders of the sterol transport protein Aster-A.
    He N; Depta L; Sievers S; Laraia L
    Bioorg Med Chem; 2024 Apr; 103():117673. PubMed ID: 38518734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of sterol uptake and transport in yeast.
    Jacquier N; Schneiter R
    J Steroid Biochem Mol Biol; 2012 Mar; 129(1-2):70-8. PubMed ID: 21145395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis.
    Yamauchi Y; Yokoyama S; Chang TY
    J Lipid Res; 2016 Jan; 57(1):77-88. PubMed ID: 26497474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: dehydroergosterol fluorescence study.
    Kohut P; Wüstner D; Hronska L; Kuchler K; Hapala I; Valachovic M
    Biochem Biophys Res Commun; 2011 Jan; 404(1):233-8. PubMed ID: 21110944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of STARD4 and NPC1 in intracellular sterol transport.
    Maxfield FR; Iaea DB; Pipalia NH
    Biochem Cell Biol; 2016 Dec; 94(6):499-506. PubMed ID: 27421092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular and fluorescent sterol approaches to probing lysosomal membrane lipid dynamics.
    Gallegos AM; Atshaves BP; Storey S; Schoer J; Kier AB; Schroeder F
    Chem Phys Lipids; 2002 Jun; 116(1-2):19-38. PubMed ID: 12093533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular sterol transport in eukaryotes, a connection to mitochondrial function?
    Schneiter R
    Biochimie; 2007 Feb; 89(2):255-9. PubMed ID: 16945463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the sterols and sterol esters of the intracellular organelles of maize shoots.
    Kemp RJ; Mercer EI
    Biochem J; 1968 Nov; 110(1):119-25. PubMed ID: 5722683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring sterol uptake, acetylation, and export in yeast.
    Choudhary V; Schneiter R
    Methods Mol Biol; 2009; 580():221-32. PubMed ID: 19784602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure, function and small molecule modulation of intracellular sterol transport proteins.
    Depta L; Whitmarsh-Everiss T; Laraia L
    Bioorg Med Chem; 2022 Aug; 68():116856. PubMed ID: 35716590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle.
    Hao M; Lin SX; Karylowski OJ; Wüstner D; McGraw TE; Maxfield FR
    J Biol Chem; 2002 Jan; 277(1):609-17. PubMed ID: 11682487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional implications of sterol transport by the oxysterol-binding protein gene family.
    Ngo MH; Colbourne TR; Ridgway ND
    Biochem J; 2010 Jul; 429(1):13-24. PubMed ID: 20545625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterol-Inspired Compound Collection.
    Whitmarsh-Everiss T; Olsen AH; Laraia L
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26755-26761. PubMed ID: 34626154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells.
    Wüstner D; Lund FW; Röhrl C; Stangl H
    Chem Phys Lipids; 2016 Jan; 194():12-28. PubMed ID: 26291493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hepatic ABCG5 and ABCG8 overexpression increases hepatobiliary sterol transport but does not alter aortic atherosclerosis in transgenic mice.
    Wu JE; Basso F; Shamburek RD; Amar MJ; Vaisman B; Szakacs G; Joyce C; Tansey T; Freeman L; Paigen BJ; Thomas F; Brewer HB; Santamarina-Fojo S
    J Biol Chem; 2004 May; 279(22):22913-25. PubMed ID: 15044450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclic AMP stimulates efflux of intracellular sterol from cholesterol-loaded cells.
    Hokland BM; Slotte JP; Bierman EL; Oram JF
    J Biol Chem; 1993 Dec; 268(34):25343-9. PubMed ID: 7503979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipoprotein-mediated delivery of BODIPY-labeled sterol and sphingolipid analogs reveals lipid transport mechanisms in mammalian cells.
    Ikonen E; Blom T
    Chem Phys Lipids; 2016 Jan; 194():29-36. PubMed ID: 26343174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of sterol-binding agent nystatin on wheat roots: the changes in membrane permeability, sterols and glycoceramides.
    Valitova JN; Minibayeva FV; Kotlova ER; Novikov AV; Shavarda AL; Murtazina LI; Ryzhkina IS
    Phytochemistry; 2011 Oct; 72(14-15):1751-9. PubMed ID: 21726881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.