These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 36220138)

  • 1. Review and evaluation of imputation methods for multivariate longitudinal data with mixed-type incomplete variables.
    Cao Y; Allore H; Vander Wyk B; Gutman R
    Stat Med; 2022 Dec; 41(30):5844-5876. PubMed ID: 36220138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of multiple imputation methods for missing data in longitudinal studies.
    Huque MH; Carlin JB; Simpson JA; Lee KJ
    BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple imputation methods for handling incomplete longitudinal and clustered data where the target analysis is a linear mixed effects model.
    Huque MH; Moreno-Betancur M; Quartagno M; Simpson JA; Carlin JB; Lee KJ
    Biom J; 2020 Mar; 62(2):444-466. PubMed ID: 31919921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple imputation methods for missing multilevel ordinal outcomes.
    Dong M; Mitani A
    BMC Med Res Methodol; 2023 May; 23(1):112. PubMed ID: 37161419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of approaches for multiple imputation of three-level data.
    Wijesuriya R; Moreno-Betancur M; Carlin JB; Lee KJ
    BMC Med Res Methodol; 2020 Aug; 20(1):207. PubMed ID: 32787781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple imputation for discrete data: Evaluation of the joint latent normal model.
    Quartagno M; Carpenter JR
    Biom J; 2019 Jul; 61(4):1003-1019. PubMed ID: 30868652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Handling missing data in matched case-control studies using multiple imputation.
    Seaman SR; Keogh RH
    Biometrics; 2015 Dec; 71(4):1150-9. PubMed ID: 26237003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple imputation in the presence of an incomplete binary variable created from an underlying continuous variable.
    Grobler AC; Lee K
    Biom J; 2020 Mar; 62(2):467-478. PubMed ID: 31304611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple imputation approaches for handling incomplete three-level data with time-varying cluster-memberships.
    Wijesuriya R; Moreno-Betancur M; Carlin J; De Silva AP; Lee KJ
    Stat Med; 2022 Sep; 41(22):4385-4402. PubMed ID: 35893317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple imputation for handling missing outcome data when estimating the relative risk.
    Sullivan TR; Lee KJ; Ryan P; Salter AB
    BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations.
    Jolani S
    Biom J; 2018 Mar; 60(2):333-351. PubMed ID: 28990686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple imputation by chained equations for systematically and sporadically missing multilevel data.
    Resche-Rigon M; White IR
    Stat Methods Med Res; 2018 Jun; 27(6):1634-1649. PubMed ID: 27647809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple imputation of discrete and continuous data by fully conditional specification.
    van Buuren S
    Stat Methods Med Res; 2007 Jun; 16(3):219-42. PubMed ID: 17621469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes.
    Lipsitz SR; Fitzmaurice GM; Weiss RD
    Psychometrika; 2020 Dec; 85(4):890-904. PubMed ID: 33006740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imputing missing time-dependent covariate values for the discrete time Cox model.
    Murad H; Dankner R; Berlin A; Olmer L; Freedman LS
    Stat Methods Med Res; 2020 Aug; 29(8):2074-2086. PubMed ID: 31680633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data.
    Welch CA; Petersen I; Bartlett JW; White IR; Marston L; Morris RW; Nazareth I; Walters K; Carpenter J
    Stat Med; 2014 Sep; 33(21):3725-37. PubMed ID: 24782349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple imputation methods for handling missing values in longitudinal studies with sampling weights: Comparison of methods implemented in Stata.
    De Silva AP; De Livera AM; Lee KJ; Moreno-Betancur M; Simpson JA
    Biom J; 2021 Feb; 63(2):354-371. PubMed ID: 33103307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis.
    Jahangiri M; Kazemnejad A; Goldfeld KS; Daneshpour MS; Mostafaei S; Khalili D; Moghadas MR; Akbarzadeh M
    BMC Med Res Methodol; 2023 Jul; 23(1):161. PubMed ID: 37415114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.