BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3622021)

  • 1. Inter-instrument comparison of blood gas analyzers and assessment of tonometry using fresh heparinized whole human blood.
    Van Kessel AL; Eichhorn JH; Clausen JL; Stone ME; Rotman HH; Crapo RO
    Chest; 1987 Sep; 92(3):418-22. PubMed ID: 3622021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of a bubble tonometer as a quality control system for blood gas analyzers (PO2 and PCO2).
    Clerbaux T; Willems E; Nullens W; Brasseur L
    Pathol Biol (Paris); 1985 Feb; 33(2):139-44. PubMed ID: 3889784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instrumental variability of respiratory blood gases among different blood gas analysers in different laboratories.
    Kampelmacher MJ; van Kesteren RG; Winckers EK
    Eur Respir J; 1997 Jun; 10(6):1341-4. PubMed ID: 9192940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide and oxygen partial pressure measurements in the cerebrospinal fluid in a conventional blood gas analyzer: analysis of bias and precision.
    Venkatesh B; Boots RJ
    J Neurol Sci; 1997 Mar; 147(1):5-8. PubMed ID: 9094053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of blood gas analyzer biases in measuring tonometered blood and a fluorocarbon-containing, proficiency-testing material.
    Hansen JE; Jensen RL; Casaburi R; Crapo RO
    Am Rev Respir Dis; 1989 Aug; 140(2):403-9. PubMed ID: 2504088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant PO2 values in proficiency testing.
    Fonzi CE; Clausen JL; Mahoney J
    Clin Chem; 1993 Mar; 39(3):467-71. PubMed ID: 8448858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of dissimilarities among instrument models in measuring PO2, PCO2, and pH in blood gas laboratories.
    Hansen JE; Casaburi R
    Chest; 1998 Mar; 113(3):780-7. PubMed ID: 9515857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flexible and versatile program for blood-gas quality control.
    Elser RC; Sitler J; Garver C
    Am J Clin Pathol; 1982 Oct; 78(4):471-8. PubMed ID: 6814234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term evaluation of a continuous intra-arterial blood gas monitoring system in patients with severe respiratory failure.
    Kilger E; Briegel J; Schelling G; Polasek J; Manert W; Groh J; Haller M
    Infusionsther Transfusionsmed; 1995 Apr; 22(2):98-104. PubMed ID: 7787410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An interlaboratory survey of hydrogen ion and blood gas determinations.
    McSweeney FM; Bullock DG; Gregory A; Whitehead TP
    Ann Clin Biochem; 1979 Sep; 16(5):249-53. PubMed ID: 42341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of a patient-dedicated, on-demand blood gas monitor in medical ICU patients.
    Mahutte CK; Sasse SA; Chen PA; Holody M
    Am J Respir Crit Care Med; 1994 Sep; 150(3):865-9. PubMed ID: 8087363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical evaluation of a new in-line continuous blood gas monitor.
    Southworth R; Sutton R; Mize S; Stammers AH; Fristoe LW; Cook D; Hostetler D; Richenbacher WE
    J Extra Corpor Technol; 1998 Dec; 30(4):166-70. PubMed ID: 10537576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance characteristics and interanalyzer variability of PO2 measurements using tonometered human blood.
    Scuderi PE; MacGregor DA; Bowton DL; Harris LC; Anderson R; James RL
    Am Rev Respir Dis; 1993 Jun; 147(6 Pt 1):1354-9. PubMed ID: 8503545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IFCC document stage 3, draft 1, dated 1989 02 01. An approved IFCC recommendation. IFCC method (1988) for tonometry of blood: reference materials for pCO2 and pO2. International Federation of Clinical Chemistry Scientific Division. Committee on pH, Blood Gases and Electrolytes.
    Burnett RW; Covington AK; Maas AH; Müller-Plathe O; Weisberg HF; Wimberley PD; Zijlstra WG; Siggaard-Anderson O; Durst RA
    Clin Chim Acta; 1989 Oct; 185(1):S17-24. PubMed ID: 2515923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring carbon dioxide tension in saline and alternative solutions: quantification of bias and precision in two blood gas analyzers.
    Riddington D; Venkatesh B; Clutton-Brock T; Bion J
    Crit Care Med; 1994 Jan; 22(1):96-100. PubMed ID: 8124983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analytical reliability of the results of a pH and blood gas study using automatic analyzers].
    Dimitrova S; Tsachev K; Dochev D; Kuzmov I
    Vutr Boles; 1984; 23(4):91-9. PubMed ID: 6506665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of a portable blood gas analyzer incorporating optodes for canine blood.
    Shiroshita Y; Tanaka R; Shibazaki A; Yamane Y
    J Vet Intern Med; 1999; 13(6):597-600. PubMed ID: 10587262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarographic pO2 sensors with heparinized membranes for in vitro and continuous in vivo registration.
    Nilsson E; Edwall G; Larsson R; Olsson P
    Scand J Clin Lab Invest; 1981 Oct; 41(6):557-63. PubMed ID: 7336122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the electrode systems of three pH and blood gas apparatus.
    Winckers EK; Teunissen AJ; Van den Camp RA; Maas AH
    J Clin Chem Clin Biochem; 1978 Mar; 16(3):175-85. PubMed ID: 25944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of a blood gas system in a central and satellite laboratory.
    Menendez-Botet CJ; Koller NE; La Monte CS; Schwartz MK
    Ann Clin Lab Sci; 1979; 9(3):247-50. PubMed ID: 464544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.