These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36220345)

  • 1. Is the Carbon Nanotube-Catalyst Interface Clean during Growth?
    Qiu L; Ding F
    Small; 2022 Nov; 18(47):e2204437. PubMed ID: 36220345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Janus Segregation at the Carbon Nanotube-Catalyst Interface.
    Bets KV; Penev ES; Yakobson BI
    ACS Nano; 2019 Aug; 13(8):8836-8841. PubMed ID: 31323179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient Kinetic Selectivity in Nanotubes Growth on Solid Co-W Catalyst.
    Penev ES; Bets KV; Gupta N; Yakobson BI
    Nano Lett; 2018 Aug; 18(8):5288-5293. PubMed ID: 29979600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why Carbon Nanotubes Grow.
    Ding LP; McLean B; Xu Z; Kong X; Hedman D; Qiu L; Page AJ; Ding F
    J Am Chem Soc; 2022 Mar; 144(12):5606-5613. PubMed ID: 35297632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact-Induced Phase Separation of Alloy Catalyst to Promote Carbon Nanotube Growth.
    Qiu L; Ding F
    Phys Rev Lett; 2019 Dec; 123(25):256101. PubMed ID: 31922762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of carbon nanotube growth under a tensile strain.
    Yamanaka A; Jono R; Tejima S; Fujita JI
    Sci Rep; 2024 Mar; 14(1):5625. PubMed ID: 38454043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Nanotubes Having Haeckelite Defects as Potential Drug Carriers. Molecular Dynamics Simulation.
    Torres C; Villarroel I; Rozas R; Contreras L
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31771295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon.
    Li M; He J; Tang Y; Sun J; Fu H; Wan Y; Qu X; Xu Z; Zheng S
    Chemosphere; 2019 Feb; 217():742-753. PubMed ID: 30448754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocatalyst structure as a template to define chirality of nascent single-walled carbon nanotubes.
    Gómez-Gualdrón DA; Zhao J; Balbuena PB
    J Chem Phys; 2011 Jan; 134(1):014705. PubMed ID: 21219018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations.
    Hedman D; McLean B; Bichara C; Maruyama S; Larsson JA; Ding F
    Nat Commun; 2024 May; 15(1):4076. PubMed ID: 38744824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and Termination Dynamics of Multiwalled Carbon Nanotubes at Near Ambient Pressure: An in Situ Transmission Electron Microscopy Study.
    Huang X; Farra R; Schlögl R; Willinger MG
    Nano Lett; 2019 Aug; 19(8):5380-5387. PubMed ID: 31369275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radius and chirality dependent conformation of polymer molecule at nanotube interface.
    Wei C
    Nano Lett; 2006 Aug; 6(8):1627-31. PubMed ID: 16895347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient defect healing in catalytic carbon nanotube growth.
    Yuan Q; Xu Z; Yakobson BI; Ding F
    Phys Rev Lett; 2012 Jun; 108(24):245505. PubMed ID: 23004292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint Theoretical and Experimental Study of Stress Graphitization in Aligned Carbon Nanotube/Carbon Matrix Composites.
    Zhang L; Kowalik M; Mao Q; Damirchi B; Zhang Y; Bradford PD; Li Q; van Duin ACT; Zhu YT
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):32656-32666. PubMed ID: 37384459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the catalyst in the growth of single-wall carbon nanotubes.
    Balbuena PB; Zhao J; Huang S; Wang Y; Sakulchaicharoen N; Resasco DE
    J Nanosci Nanotechnol; 2006 May; 6(5):1247-58. PubMed ID: 16792351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth.
    Vasenkov AV; Sengupta D; Frenklach M
    J Phys Chem B; 2009 Feb; 113(7):1877-82. PubMed ID: 19173570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen-induced catalyst restructuring for epitaxial growth of multiwalled carbon nanotubes.
    Pattinson SW; Ranganathan V; Murakami HK; Koziol KK; Windle AH
    ACS Nano; 2012 Sep; 6(9):7723-30. PubMed ID: 22853327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population growth dynamics of carbon nanotubes.
    Bedewy M; Meshot ER; Reinker MJ; Hart AJ
    ACS Nano; 2011 Nov; 5(11):8974-89. PubMed ID: 22023221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Vertical Carbon Nanotube Interconnect Structures Using CMOS-Compatible Catalysts.
    Ma Z; Zhou S; Zhou C; Xiao Y; Li S; Chan M
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and thermal properties of graphyne-coated carbon nanotubes: a molecular dynamics simulation on one-dimensional all-carbon van der Waals heterostructures.
    Li J; Ying P; Liang T; Du Y; Zhou J; Zhang J
    Phys Chem Chem Phys; 2023 Mar; 25(12):8651-8663. PubMed ID: 36891945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.