These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 36220345)
21. Protein G selects two binding sites for carbon nanotube with dissimilar behavior; a molecular dynamics study. Ebrahim-Habibi MB; Ghobeh M; Aghakhani Mahyari F; Rafii-Tabar H; Sasanpour P J Mol Graph Model; 2019 Mar; 87():257-267. PubMed ID: 30594774 [TBL] [Abstract][Full Text] [Related]
22. On the mechanical stability and buckling analysis of carbon nanotubes filled with ice nanotubes in the aqueous environment: A molecular dynamics simulation approach. Ajori S; Ameri A; Ansari R J Mol Graph Model; 2019 Jun; 89():74-81. PubMed ID: 30870651 [TBL] [Abstract][Full Text] [Related]
23. Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes. Rocks C; Mitra S; Macias-Montero M; Maguire P; Svrcek V; Levchenko I; Ostrikov K; Mariotti D ACS Appl Mater Interfaces; 2016 Jul; 8(29):19012-23. PubMed ID: 27362537 [TBL] [Abstract][Full Text] [Related]
24. Molecular dynamics simulation of doxorubicin adsorption on a bundle of functionalized CNT. Izadyar A; Farhadian N; Chenarani N J Biomol Struct Dyn; 2016 Aug; 34(8):1797-805. PubMed ID: 26375507 [TBL] [Abstract][Full Text] [Related]
26. Dynamics and density profile of water in nanotubes as one-dimensional fluid. Liu Y; Wang Q; Zhang L; Wu T Langmuir; 2005 Dec; 21(25):12025-30. PubMed ID: 16316148 [TBL] [Abstract][Full Text] [Related]
27. Threshold barrier of carbon nanotube growth. Yuan Q; Hu H; Ding F Phys Rev Lett; 2011 Oct; 107(15):156101. PubMed ID: 22107305 [TBL] [Abstract][Full Text] [Related]
28. On Correlation Effect of the Van-der-Waals and Intramolecular Forces for the Nucleotide Chain - Metallic Nanoparticles - Carbon Nanotube Binding. Khusenov MA; Dushanov EB; Kholmurodov KhT; Zaki MM; Sweilam NH Open Biochem J; 2016; 10():17-26. PubMed ID: 27099634 [TBL] [Abstract][Full Text] [Related]
29. Degradation of Carbon Nanotube Array Thermal Interface Materials through Thermal Aging: Effects of Bonding, Array Height, and Catalyst Oxidation. Nylander A; Hansson J; Nilsson T; Ye L; Fu Y; Liu J ACS Appl Mater Interfaces; 2021 Jul; 13(26):30992-31000. PubMed ID: 34160204 [TBL] [Abstract][Full Text] [Related]
30. Investigation of performance of aluminum doped carbon nanotube (8, 0) as adequate catalyst to oxygen reduction reaction. Sun M; Wang X; Shang X; Liu X; Najafi M J Mol Graph Model; 2019 Nov; 92():123-130. PubMed ID: 31352206 [TBL] [Abstract][Full Text] [Related]
31. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Huang J; Zhu N; Yang T; Zhang T; Wu P; Dang Z Biosens Bioelectron; 2015 Oct; 72():332-9. PubMed ID: 26002018 [TBL] [Abstract][Full Text] [Related]
32. Role of arginine in mediating protein-carbon nanotube interactions. Wu E; Coppens MO; Garde S Langmuir; 2015 Feb; 31(5):1683-92. PubMed ID: 25575129 [TBL] [Abstract][Full Text] [Related]
33. Polymers encapsulated in short single wall carbon nanotubes: pseudo-1D morphologies and induced chirality. Kumar S; Pattanayek SK; Pereira GG J Chem Phys; 2015 Mar; 142(11):114901. PubMed ID: 25796260 [TBL] [Abstract][Full Text] [Related]
34. Synergistic effects boost electrocatalytic reduction of bromate on supported bimetallic Ru-Cu catalyst. Wu T; Hu J; Wan Y; Qu X; Zheng S J Hazard Mater; 2022 Sep; 438():129551. PubMed ID: 35999744 [TBL] [Abstract][Full Text] [Related]
35. [Influence of carboxylic carbon nanotube supported platinum catalyst on cathode oxygen reduction performance of MFC]. Tu LX; Zhu NW; Wu PX; Li P; Wu JH Huan Jing Ke Xue; 2013 Apr; 34(4):1617-22. PubMed ID: 23798151 [TBL] [Abstract][Full Text] [Related]
36. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur. Suzuki S; Mori S J Air Waste Manag Assoc; 2017 Aug; 67(8):873-880. PubMed ID: 28278030 [TBL] [Abstract][Full Text] [Related]
37. Peptide encapsulation regulated by the geometry of carbon nanotubes. Zhang ZS; Kang Y; Liang LJ; Liu YC; Wu T; Wang Q Biomaterials; 2014 Feb; 35(5):1771-8. PubMed ID: 24290699 [TBL] [Abstract][Full Text] [Related]
38. Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination. Jeong S; Lee J; Kim HC; Hwang JY; Ku BC; Zakharov DN; Maruyama B; Stach EA; Kim SM Nanoscale; 2016 Jan; 8(4):2055-62. PubMed ID: 26700058 [TBL] [Abstract][Full Text] [Related]
39. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256 [TBL] [Abstract][Full Text] [Related]