These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36220395)

  • 1. Effect of the Tubing Material Used in Peristaltic Pumping in Tangential Flow Filtration Processes of Biopharmaceutics on Particle Formation and Flux.
    Deiringer N; Leitner I; Friess W
    J Pharm Sci; 2023 Mar; 112(3):665-672. PubMed ID: 36220395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of Tubings for Peristaltic Pumping of Biopharmaceutics.
    Deiringer N; Aleshkevich S; Müller C; Friess W
    J Pharm Sci; 2022 Dec; 111(12):3251-3260. PubMed ID: 36058256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaching the breaking point: Effect of tubing characteristics on protein particle formation during peristaltic pumping.
    Deiringer N; Friess W
    Int J Pharm; 2022 Nov; 627():122216. PubMed ID: 36179929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Afraid of the wall of death? Considerations on monoclonal antibody characteristics that trigger aggregation during peristaltic pumping.
    Deiringer N; Friess W
    Int J Pharm; 2023 Feb; 633():122635. PubMed ID: 36690131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle shedding from peristaltic pump tubing in biopharmaceutical drug product manufacturing.
    Saller V; Matilainen J; Grauschopf U; Bechtold-Peters K; Mahler HC; Friess W
    J Pharm Sci; 2015 Apr; 104(4):1440-50. PubMed ID: 25605257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteins on the Rack: Mechanistic Studies on Protein Particle Formation During Peristaltic Pumping.
    Deiringer N; Friess W
    J Pharm Sci; 2022 May; 111(5):1370-1378. PubMed ID: 35122831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catching Speedy Gonzales: Driving forces for Protein Film Formation on Silicone Rubber Tubing During Pumping.
    Deiringer N; Rüdiger D; Luxbacher T; Zahler S; Frieß W
    J Pharm Sci; 2022 Jun; 111(6):1577-1586. PubMed ID: 35231495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-Solid Interfacial Contact of Tubing Walls Drives Therapeutic Protein Aggregation During Peristaltic Pumping.
    Fanthom TB; Wilson C; Gruber D; Bracewell DG
    J Pharm Sci; 2023 Dec; 112(12):3022-3034. PubMed ID: 37595747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Tubing Type, Operating Parameters, and Surfactants on Particle Formation During Peristaltic Filling Pump Processing of a mAb Formulation.
    Her C; Tanenbaum LM; Bandi S; Randolph TW; Thirumangalathu R; Mallela KMG; Carpenter JF; Elias Y
    J Pharm Sci; 2020 Apr; 109(4):1439-1448. PubMed ID: 31954724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of particle shedding from silicone tubing on antibody stability.
    Saller V; Hediger C; Matilainen J; Grauschopf U; Bechtold-Peters K; Mahler HC; Friess W
    J Pharm Pharmacol; 2018 May; 70(5):675-685. PubMed ID: 27367430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions.
    Dalwadi G; Benson HA; Chen Y
    Pharm Res; 2005 Dec; 22(12):2152-62. PubMed ID: 16151669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Impurities from Sugar Excipient on Filtrate Flux during Ultrafiltration and Diafiltration Process.
    Lee J; Na J; Baek Y
    Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultra scale-down method to investigate monoclonal antibody processing during tangential flow filtration using ultrafiltration membranes.
    Fernandez-Cerezo L; Rayat ACME; Chatel A; Pollard JM; Lye GJ; Hoare M
    Biotechnol Bioeng; 2019 Mar; 116(3):581-590. PubMed ID: 30411315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of a conjugated polysaccharide vaccine using tangential flow diafiltration.
    Emami P; Motevalian SP; Pepin E; Zydney AL
    Biotechnol Bioeng; 2019 Mar; 116(3):591-597. PubMed ID: 30450582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spallation of Small Particles From Peristaltic Pump Tube Segments.
    Liu Y; Faria M; Leonard E
    Artif Organs; 2017 Jul; 41(7):672-677. PubMed ID: 27735061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streamlining process characterization efforts using the high throughput ambr® crossflow system for ultrafiltration and diafiltration processing of monoclonal antibodies.
    Fernandez-Cerezo L; Benner SW; Pollard JM
    Biotechnol Prog; 2021 May; 37(3):e3118. PubMed ID: 33369289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an ELP-Z based mAb affinity precipitation process using scaled-down filtration techniques.
    Sheth RD; Bhut BV; Jin M; Li Z; Chen W; Cramer SM
    J Biotechnol; 2014 Dec; 192 Pt A():11-9. PubMed ID: 25285370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scale-down cross-flow filtration technology for biopharmaceuticals and the associated theory.
    Guo S; Kiefer H; Zhou D; Guan YH; Wang S; Wang H; Lu Y; Zhuang Y
    J Biotechnol; 2016 Mar; 221():25-31. PubMed ID: 26795357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear contributions to cell culture performance and product recovery in ATF and TFF perfusion systems.
    Wang S; Godfrey S; Ravikrishnan J; Lin H; Vogel J; Coffman J
    J Biotechnol; 2017 Mar; 246():52-60. PubMed ID: 28159614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of MFI-UF constant pressure, MFI-UF constant flux and Crossflow Sampler-Modified Fouling Index Ultrafiltration (CFS-MFI UF).
    Sim LN; Ye Y; Chen V; Fane AG
    Water Res; 2011 Feb; 45(4):1639-50. PubMed ID: 21194721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.