BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36221137)

  • 1. A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency.
    Lu X; Gu X
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):106. PubMed ID: 36221137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata.
    Kim YM; Jae J; Myung S; Sung BH; Dong JI; Park YK
    Bioresour Technol; 2016 Nov; 219():371-377. PubMed ID: 27501034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic fast pyrolysis of enzymatic hydrolysis lignin over Lewis-acid catalyst niobium pentoxide and mechanism study.
    Li S; Luo Z; Wang W; Sun H; Xie J; Liang X
    Bioresour Technol; 2020 Nov; 316():123853. PubMed ID: 32731173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.
    Fan L; Zhang Y; Liu S; Zhou N; Chen P; Cheng Y; Addy M; Lu Q; Omar MM; Liu Y; Wang Y; Dai L; Anderson E; Peng P; Lei H; Ruan R
    Bioresour Technol; 2017 Oct; 241():1118-1126. PubMed ID: 28578807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignocellulosic biomass-based pyrolysis: A comprehensive review.
    K N Y; T PD; P S; S K; R YK; Varjani S; AdishKumar S; Kumar G; J RB
    Chemosphere; 2022 Jan; 286(Pt 2):131824. PubMed ID: 34388872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic fast pyrolysis of lignin to produce aromatic hydrocarbons: optimal conditions and reaction mechanism.
    Luo Z; Lu K; Yang Y; Li S; Li G
    RSC Adv; 2019 Oct; 9(55):31960-31968. PubMed ID: 35530787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst.
    Duan D; Zhang Y; Lei H; Villota E; Ruan R
    Waste Manag; 2019 Apr; 88():1-9. PubMed ID: 31079620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts.
    Kumar R; Strezov V; Lovell E; Kan T; Weldekidan H; He J; Dastjerdi B; Scott J
    Bioresour Technol; 2019 May; 279():404-409. PubMed ID: 30712994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer.
    Ro D; Shafaghat H; Jang SH; Lee HW; Jung SC; Jae J; Cha JS; Park YK
    Environ Res; 2019 May; 172():658-664. PubMed ID: 30878737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmasking radical-mediated lignin pyrolysis after benzyl hydroxyl shielding.
    Fan Y; Lei M; Zhang Z; Kong X; Xu W; Han Y; Li M; Liu C; Xiao R
    Bioresour Technol; 2021 Dec; 342():125944. PubMed ID: 34537528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic fast pyrolysis of lignin over mesoporous Y zeolite using Py-GC/MS.
    Lee HW; Kim TH; Park SH; Jeon JK; Suh DJ; Park YK
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2640-6. PubMed ID: 23763139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative production of monophenolic chemicals and carbon adsorption materials from cascade pyrolysis of acid hydrolysis lignin.
    Xu Y; Fan Z; Li X; Yang S; Wang J; Zheng A; Shu R
    Bioresour Technol; 2024 May; 399():130557. PubMed ID: 38460561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technology Overview of Fast Pyrolysis of Lignin: Current State and Potential for Scale-Up.
    Singh-Morgan A; Puente-Urbina A; van Bokhoven JA
    ChemSusChem; 2022 Jul; 15(14):e202200343. PubMed ID: 35474609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pyrolytic depolymerization mechanism of a lignin model compound with α-O-4 linkage].
    Jiang X; Lu Q; Dong X; Chen C; Dong C
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1512-9. PubMed ID: 26964340
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Oh D; Cho EB; Lee IG; Park YK
    J Nanosci Nanotechnol; 2019 Feb; 19(2):1162-1165. PubMed ID: 30360225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production.
    Wang S; Li Z; Bai X; Yi W; Fu P
    Bioresour Technol; 2019 Apr; 278():66-72. PubMed ID: 30682638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OH-Initiated Reactions of
    Hudzik JM; Barekati-Goudarzi M; Khachatryan L; Bozzelli JW; Ruckenstein E; Asatryan R
    J Phys Chem A; 2020 Jun; 124(24):4875-4904. PubMed ID: 32432475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel insight into pyrolysis behaviors of lignin using in-situ pyrolysis-double ionization time-of-flight mass spectrometry combined with electron paramagnetic resonance spectroscopy.
    Zhu J; Yang H; Hu H; Zhou Y; Li J; Jin L
    Bioresour Technol; 2020 Sep; 312():123555. PubMed ID: 32447123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions.
    Park C; Lee N; Kim J; Lee J
    Environ Pollut; 2021 Feb; 270():116045. PubMed ID: 33257148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.