These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36221137)

  • 21. Enhancing production of hydrocarbon-rich bio-oil from biomass via catalytic fast pyrolysis coupled with advanced oxidation process pretreatment.
    Wang J; Zhang B; Shujaa Aldeen A; Mwenya S; Cheng H; Xu Z; Zhang H
    Bioresour Technol; 2022 Sep; 359():127450. PubMed ID: 35697262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic treatment improves fast pyrolysis product selectivity of softwood and hardwood lignin.
    Wang L; Ni H; Zhang J; Shi Q; Zhang R; Yu H; Li M
    Sci Total Environ; 2020 May; 717():137241. PubMed ID: 32070898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin.
    Fan L; Chen P; Zhou N; Liu S; Zhang Y; Liu Y; Wang Y; Omar MM; Peng P; Addy M; Cheng Y; Ruan R
    Bioresour Technol; 2018 Jan; 247():851-858. PubMed ID: 30060422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during co-pyrolysis with biomass.
    Qian TT; Li DC; Jiang H
    Environ Sci Technol; 2014 Sep; 48(18):10734-42. PubMed ID: 25154038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microwave-assisted co-pyrolysis of pretreated lignin and soapstock for upgrading liquid oil: Effect of pretreatment parameters on pyrolysis behavior.
    Duan D; Ruan R; Lei H; Liu Y; Wang Y; Zhang Y; Zhao Y; Dai L; Wu Q; Zhang S
    Bioresour Technol; 2018 Jun; 258():98-104. PubMed ID: 29524692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the interaction of phenolic hydroxyl with the benzene rings on lignin pyrolysis.
    Ma H; Li T; Wu S; Zhang X
    Bioresour Technol; 2020 Aug; 309():123351. PubMed ID: 32289658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of polycyclic aromatic hydrocarbon formation during pyrolytic production of lignin-based biochar via nitrogen and boron co-doping.
    Hung CM; Chen CW; Huang CP; Yang YY; Dong CD
    Bioresour Technol; 2022 Jul; 355():127246. PubMed ID: 35490956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis.
    Wang S; Li Z; Bai X; Yi W; Fu P
    Bioresour Technol; 2018 Nov; 268():323-331. PubMed ID: 30092486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation between pyrolysis behaviors of the components and the overall pyrolysates from pulping spent liquor.
    Lyu G; Lou R; Zhao Y; Wu S
    Bioresour Technol; 2018 Jul; 259():343-348. PubMed ID: 29574314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.
    Li D; Briens C; Berruti F
    Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative insights on de/repolymerization and deoxygenation of lignin in subcritical water.
    LaVallie AL; Bilek H; Andrianova A; Furey K; Voeller K; Yao B; Kozliak E; Kubátová A
    Bioresour Technol; 2021 Dec; 342():125974. PubMed ID: 34600320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of deep eutectic solvents-regulated lignin structure on subsequent pyrolysis products selectivity.
    Li T; Yin Y; Wu S; Du X
    Bioresour Technol; 2022 Jan; 343():126120. PubMed ID: 34695590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass.
    Luque L; Westerhof R; Van Rossum G; Oudenhoven S; Kersten S; Berruti F; Rehmann L
    Bioresour Technol; 2014 Jun; 161():20-8. PubMed ID: 24681340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude.
    Miskolczi N; Buyong F; Angyal A; Williams PT; Bartha L
    Bioresour Technol; 2010 Nov; 101(22):8881-90. PubMed ID: 20663664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils.
    Vispute TP; Zhang H; Sanna A; Xiao R; Huber GW
    Science; 2010 Nov; 330(6008):1222-7. PubMed ID: 21109668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials.
    Tawalbeh M; Al-Othman A; Salamah T; Alkasrawi M; Martis R; El-Rub ZA
    J Environ Manage; 2021 Dec; 299():113597. PubMed ID: 34492435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elucidating radical-mediated pyrolysis behaviors of preoxidized lignins.
    Fan Y; Lei M; Han Y; Zhang Z; Kong X; Xu W; Li M; Zhang H; Xiao R; Liu C
    Bioresour Technol; 2022 Apr; 350():126908. PubMed ID: 35227917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancements and Perspectives toward Lignin Valorization via O-Demethylation.
    Wu X; Smet E; Brandi F; Raikwar D; Zhang Z; Maes BUW; Sels BF
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202317257. PubMed ID: 38128012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrolysis for Nylon 6 Monomer Recovery from Teabag Waste.
    Kim S; Lee N; Lee J
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of monomeric phenols by thermochemical conversion of biomass: a review.
    Amen-Chen C; Pakdel H; Roy C
    Bioresour Technol; 2001 Sep; 79(3):277-99. PubMed ID: 11499582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.