BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36221381)

  • 21. Profile of Pathogenic Proteins and MicroRNAs in Plasma-derived Extracellular Vesicles in Alzheimer's Disease: A Pilot Study.
    Li F; Xie XY; Sui XF; Wang P; Chen Z; Zhang JB
    Neuroscience; 2020 Apr; 432():240-246. PubMed ID: 32135232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative transcriptomics of choroid plexus in Alzheimer's disease, frontotemporal dementia and Huntington's disease: implications for CSF homeostasis.
    Stopa EG; Tanis KQ; Miller MC; Nikonova EV; Podtelezhnikov AA; Finney EM; Stone DJ; Camargo LM; Parker L; Verma A; Baird A; Donahue JE; Torabi T; Eliceiri BP; Silverberg GD; Johanson CE
    Fluids Barriers CNS; 2018 May; 15(1):18. PubMed ID: 29848382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential RNA packaging into small extracellular vesicles by neurons and astrocytes.
    Luo X; Jean-Toussaint R; Sacan A; Ajit SK
    Cell Commun Signal; 2021 Jul; 19(1):75. PubMed ID: 34246289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of miRNAs regulating MAPT expression and their analysis in plasma of patients with dementia.
    Piscopo P; Grasso M; Manzini V; Zeni A; Castelluzzo M; Fontana F; Talarico G; Castellano AE; Rivabene R; Crestini A; Bruno G; Ricci L; Denti MA
    Front Mol Neurosci; 2023; 16():1127163. PubMed ID: 37324585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasma Small Extracellular Vesicle-Carried miRNA-501-5p Promotes Vascular Smooth Muscle Cell Phenotypic Modulation-Mediated In-Stent Restenosis.
    Gao XF; Wang ZM; Chen AQ; Wang F; Luo S; Gu Y; Kong XQ; Zuo GF; Jiang XM; Ding GW; Chen Y; Ge Z; Zhang JJ; Chen SL
    Oxid Med Cell Longev; 2021; 2021():6644970. PubMed ID: 33968296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small extracellular vesicle microRNAs in pediatric myasthenia gravis plasma and skeletal muscle.
    Zhu M; Wang Y; Xu X; Guo X; Mao Y; Gao F
    Postgrad Med J; 2024 Jun; 100(1185):488-495. PubMed ID: 38449066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-Onset Alzheimer's Disease and Frontotemporal Dementia.
    Tan YJ; Wong BYX; Vaidyanathan R; Sreejith S; Chia SY; Kandiah N; Ng ASL; Zeng L
    J Alzheimers Dis Rep; 2021; 5(1):805-813. PubMed ID: 34870106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathological (Dis)Similarities in Neuronal Exosome-Derived Synaptic and Organellar Marker Levels Between Alzheimer's Disease and Frontotemporal Dementia.
    Krishna G; Santhoshkumar R; Sivakumar PT; Alladi S; Mahadevan A; Dahale AB; Arshad F; Subramanian S
    J Alzheimers Dis; 2023; 94(s1):S387-S397. PubMed ID: 36336935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different Inflammatory Signatures in Alzheimer's Disease and Frontotemporal Dementia Cerebrospinal Fluid.
    Boström G; Freyhult E; Virhammar J; Alcolea D; Tumani H; Otto M; Brundin RM; Kilander L; Löwenmark M; Giedraitis V; Lleó A; von Arnim CAF; Kultima K; Ingelsson M
    J Alzheimers Dis; 2021; 81(2):629-640. PubMed ID: 33814444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apolipoprotein L1 is increased in frontotemporal lobar degeneration post-mortem brain but not in ante-mortem cerebrospinal fluid.
    Hok-A-Hin YS; Dijkstra AA; Rábano A; Hoozemans JJ; Castillo L; Seelaar H; van Swieten JC; Pijnenburg YAL; Teunissen CE; Del Campo M
    Neurobiol Dis; 2022 Oct; 172():105813. PubMed ID: 35820647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum.
    Karch CM; Wen N; Fan CC; Yokoyama JS; Kouri N; Ross OA; Höglinger G; Müller U; Ferrari R; Hardy J; Schellenberg GD; Sleiman PM; Momeni P; Hess CP; Miller BL; Sharma M; Van Deerlin V; Smeland OB; Andreassen OA; Dale AM; Desikan RS;
    JAMA Neurol; 2018 Jul; 75(7):860-875. PubMed ID: 29630712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparability of the small RNA secretome across human biofluids concomitantly collected from healthy adults.
    Langevin SM; Kuhnell D; Biesiada J; Zhang X; Medvedovic M; Talaska GG; Burns KA; Kasper S
    PLoS One; 2020; 15(4):e0229976. PubMed ID: 32275679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small extracellular vesicles in plasma reveal molecular effects of modified Mediterranean-ketogenic diet in participants with mild cognitive impairment.
    Kumar A; Sharma M; Su Y; Singh S; Hsu FC; Neth BJ; Register TC; Blennow K; Zetterberg H; Craft S; Deep G
    Brain Commun; 2022; 4(6):fcac262. PubMed ID: 36337342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of small extracellular vesicle subtypes in follicular fluid: Insights into the function and miRNA profiles.
    Wang X; Meng K; Wang H; Wang Y; Zhao Y; Kang J; Zhang Y; Quan F
    J Cell Physiol; 2021 Aug; 236(8):5633-5645. PubMed ID: 33576507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer's disease and other types of dementia - an exploratory study.
    Sørensen SS; Nygaard AB; Christensen T
    Transl Neurodegener; 2016; 5():6. PubMed ID: 26981236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A multiancestral genome-wide exome array study of Alzheimer disease, frontotemporal dementia, and progressive supranuclear palsy.
    Chen JA; Wang Q; Davis-Turak J; Li Y; Karydas AM; Hsu SC; Sears RL; Chatzopoulou D; Huang AY; Wojta KJ; Klein E; Lee J; Beekly DL; Boxer A; Faber KM; Haase CM; Miller J; Poon WW; Rosen A; Rosen H; Sapozhnikova A; Shapira J; Varpetian A; Foroud TM; Levenson RW; Levey AI; Kukull WA; Mendez MF; Ringman J; Chui H; Cotman C; DeCarli C; Miller BL; Geschwind DH; Coppola G
    JAMA Neurol; 2015 Apr; 72(4):414-22. PubMed ID: 25706306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapeutic Role of microRNAs of Small Extracellular Vesicles from Human Mesenchymal Stromal/Stem Cells in Treatment of Experimental Traumatic Brain Injury.
    Zhang Y; Zhang Y; Chopp M; Pang H; Chen L; Zhang ZG; Mahmood A; Xiong Y
    J Neurotrauma; 2023 Apr; 40(7-8):758-771. PubMed ID: 36394949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Searching for novel cerebrospinal fluid biomarkers of tau pathology in frontotemporal dementia: an elusive quest.
    Foiani MS; Cicognola C; Ermann N; Woollacott IOC; Heller C; Heslegrave AJ; Keshavan A; Paterson RW; Ye K; Kornhuber J; Fox NC; Schott JM; Warren JD; Lewczuk P; Zetterberg H; Blennow K; Höglund K; Rohrer JD
    J Neurol Neurosurg Psychiatry; 2019 Jul; 90(7):740-746. PubMed ID: 30981993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adipocyte-Derived Small Extracellular Vesicles from Patients with Alzheimer Disease Carry miRNAs Predicted to Target the CREB Signaling Pathway in Neurons.
    Batabyal RA; Bansal A; Cechinel LR; Authelet K; Goldberg M; Nadler E; Keene CD; Jayadev S; Domoto-Reilly K; Li G; Peskind E; Hashimoto-Torii K; Buchwald D; Freishtat RJ
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical Complexity Analyses and Their Cognitive Correlate in Alzheimer's Disease and Frontotemporal Dementia.
    Nicastro N; Malpetti M; Cope TE; Bevan-Jones WR; Mak E; Passamonti L; Rowe JB; O'Brien JT
    J Alzheimers Dis; 2020; 76(1):331-340. PubMed ID: 32444550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.