These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36221473)

  • 1. Adaptive digital back propagation exploiting adjoint-based optimization for fiber-optic communications.
    Maghrabi MMT; Bakr MH; Kumar S
    Opt Express; 2022 May; 30(10):16264-16288. PubMed ID: 36221473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjoint sensitivity analysis approach for the nonlinear Schrödinger equation.
    Maghrabi MMT; Bakr MH; Kumar S
    Opt Lett; 2019 Aug; 44(16):3940-3943. PubMed ID: 31415517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link.
    Asif R; Lin CY; Holtmannspoetter M; Schmauss B
    Opt Express; 2010 Oct; 18(22):22796-807. PubMed ID: 21164618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems.
    Xu T; Shevchenko NA; Lavery D; Semrau D; Liga G; Alvarado A; Killey RI; Bayvel P
    Opt Express; 2017 Feb; 25(4):3311-3326. PubMed ID: 28241546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning.
    Fan Q; Zhou G; Gui T; Lu C; Lau APT
    Nat Commun; 2020 Jul; 11(1):3694. PubMed ID: 32703945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.
    Liang X; Kumar S
    Opt Express; 2017 Mar; 25(5):5031-5043. PubMed ID: 28380769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical back propagation for compensating nonlinear impairments in fiber optic links with ROADMs.
    Liang X; Kumar S
    Opt Express; 2016 Oct; 24(20):22682-22692. PubMed ID: 27828338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blind back-propagation method for fiber nonlinearity compensation with low computational complexity and high performance.
    Zhou J; Wang Y; Zhang Y
    Opt Express; 2020 Apr; 28(8):11424-11438. PubMed ID: 32403654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated digital back propagation based on perturbation theory.
    Liang X; Kumar S
    Opt Express; 2015 Jun; 23(11):14655-65. PubMed ID: 26072825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the sequential quadratic programming algorithm for reconstructing the distribution of optical parameters based on the time-domain radiative transfer equation.
    Qi H; Qiao YB; Ren YT; Shi JW; Zhang ZY; Ruan LM
    Opt Express; 2016 Oct; 24(21):24297-24312. PubMed ID: 27828161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations.
    Rafique D; Ellis AD
    Opt Express; 2011 Aug; 19(18):16919-26. PubMed ID: 21935052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning-based digital back propagation to compensate for fiber nonlinearity considering self-phase and cross-phase modulation for wavelength-division multiplexed systems.
    Inoue T; Matsumoto R; Namiki S
    Opt Express; 2022 Apr; 30(9):14851-14872. PubMed ID: 35473220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital compensation of cross-phase modulation distortions using perturbation technique for dispersion-managed fiber-optic systems.
    Liang X; Kumar S; Shao J; Malekiha M; Plant DV
    Opt Express; 2014 Aug; 22(17):20634-45. PubMed ID: 25321268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint intra and inter-channel nonlinearity compensation based on interpretable neural network for long-haul coherent systems.
    Tang D; Wu Z; Sun Z; Tang X; Qiao Y
    Opt Express; 2021 Oct; 29(22):36242-36256. PubMed ID: 34809040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folded digital backward propagation for dispersion-managed fiber-optic transmission.
    Zhu L; Li G
    Opt Express; 2011 Mar; 19(7):5953-9. PubMed ID: 21451620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of PMD on fiber nonlinearity compensation using digital back propagation.
    Gao G; Chen X; Shieh W
    Opt Express; 2012 Jun; 20(13):14406-18. PubMed ID: 22714502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.
    Xu T; Karanov B; Shevchenko NA; Lavery D; Liga G; Killey RI; Bayvel P
    Sci Rep; 2017 Oct; 7(1):12986. PubMed ID: 29021614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjoint-enabled optimization of optical devices based on coupled-mode equations.
    Lefevre Y; Wahl P; Vermeulen N; Thienpont H
    Opt Express; 2014 Aug; 22(16):19423-39. PubMed ID: 25321026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-order statistical equalizer for nonlinearity compensation in dispersion-managed coherent optical communications.
    Koike-Akino T; Duan C; Parsons K; Kojima K; Yoshida T; Sugihara T; Mizuochi T
    Opt Express; 2012 Jul; 20(14):15769-80. PubMed ID: 22772267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-step digital backpropagation for subcarrier-multiplexing transmissions.
    Lun H; Zhuge Q; Xiao Z; Fu S; Tang M; Liu D; Hu W; Plant DV
    Opt Express; 2019 Dec; 27(25):36680-36690. PubMed ID: 31873441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.