These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36221503)

  • 1. Phase-distribution-aware adaptive decision scheme to improve the reliability of holographic data storage.
    Zhao Y; Wu F; Lin X; Zhang M; Yu Q; Tan X; Xie C
    Opt Express; 2022 May; 30(10):16655-16668. PubMed ID: 36221503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the data reliability of phase modulated holographic storage using a reliable bit aware low-density parity-check code.
    Zhao Y; Wu F; Lin X; Zhou J; Zhang M; Yu Q; Tan X; Xie C
    Opt Express; 2022 Oct; 30(21):37579-37594. PubMed ID: 36258344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting data compression to improve reliability of phase-modulated holographic data storage.
    Yu Q; Wu F; Zhang M; Xie C
    Opt Express; 2023 Oct; 31(21):34883-34902. PubMed ID: 37859234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decision-free downsampling method assisted via channel-transfer information to improve the reliability of holographic data storage systems.
    Zhao Y; Wu F; Lin X; Tan X; Xie C
    Opt Express; 2022 Nov; 30(24):43987-44003. PubMed ID: 36523084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving reliability using phase distribution aware LDPC code for holographic data storage.
    Yu Q; Wu F; Zhang M; Zhao Y; Xie C
    Appl Opt; 2022 Jul; 61(21):6119-6127. PubMed ID: 36256223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decision feedback equalizer for holographic data storage.
    Kim K; Kim SH; Koo G; Seo MS; Kim SW
    Appl Opt; 2018 May; 57(15):4056-4066. PubMed ID: 29791379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved phase retrieval in holographic data storage based on a designed iterative embedded data.
    Yu C; Wang S; Chen R; Hao J; Zheng Q; Wang J; Qiu X; Wang K; Lin D; Yang Y; Li H; Lin X; Tan X
    Front Optoelectron; 2021 Dec; 14(4):529-539. PubMed ID: 36637766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lensless phase retrieval based on deep learning used in holographic data storage.
    Hao J; Lin X; Lin Y; Song H; Chen R; Chen M; Wang K; Tan X
    Opt Lett; 2021 Sep; 46(17):4168-4171. PubMed ID: 34469966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast non-interferometric iterative phase retrieval for holographic data storage.
    Lin X; Huang Y; Shimura T; Fujimura R; Tanaka Y; Endo M; Nishimoto H; Liu J; Li Y; Liu Y; Tan X
    Opt Express; 2017 Dec; 25(25):30905-30915. PubMed ID: 29245770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-to-amplitude data page conversion for holographic storage and optical encryption.
    Koppa P
    Appl Opt; 2007 Jun; 46(17):3561-71. PubMed ID: 17514316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation-Based Multiplexing of Complex Amplitude Data Pages in a Holographic Storage System Using Digital Holographic Techniques.
    Nobukawa T; Nomura T
    Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection method for the complex amplitude of a signal beam with intensity and phase modulation using the transport of intensity equation for holographic data storage.
    Bunsen M; Tateyama S
    Opt Express; 2019 Aug; 27(17):24029-24042. PubMed ID: 31510298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume-recorded hologram modeling, point-spread function analysis, and segmented adaptive equalization for holographic data storage.
    Hosaka M; Ishii T; Hoshizawa T
    Appl Opt; 2019 Jun; 58(17):4678-4686. PubMed ID: 31251288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase retrieval based on deep learning with bandpass filtering in holographic data storage.
    Fan R; Hao J; Chen R; Wang J; Lin Y; Jin J; Yang R; Zheng X; Wang K; Lin D; Lin X; Tan X
    Opt Express; 2024 Jan; 32(3):4498-4510. PubMed ID: 38297650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-image-based sparse-gray-level data pages for holographic data storage.
    Das B; Joseph J; Singh K
    Appl Opt; 2009 Oct; 48(28):5240-50. PubMed ID: 19798361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compression-Assisted Adaptive ECC and RAID Scattering for NAND Flash Storage Devices.
    Lim SH; Park KW
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient dual page reproduction in holographic data storage.
    Katano Y; Muroi T; Kinoshita N; Ishii N
    Opt Express; 2021 Oct; 29(21):33257-33268. PubMed ID: 34809141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase retrieval in holographic data storage by expanded spectrum combined with dynamic sampling method.
    Chen R; Hao J; Wang J; Lin Y; Wang K; Lin D; Lin X; Tan X
    Sci Rep; 2023 Nov; 13(1):18912. PubMed ID: 37919360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding.
    Liu J; Horimai H; Lin X; Huang Y; Tan X
    Opt Express; 2018 Feb; 26(4):3828-3838. PubMed ID: 29475361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density implications of shift compensation postprocessing in holographic storage systems.
    Menetrier L; Burr GW
    Appl Opt; 2003 Feb; 42(5):845-60. PubMed ID: 12593488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.